Posts

Can Californians Escape Oil and Gas Pollution?

The city of Los Angeles is considering a 2,500-foot setback safety buffer between residences and oil and gas wells. Support for the proposal is being led by the grassroots group Stand Together Against Neighborhood Drilling (STAND-LA). The push for a setback follows a recent report by the Los Angeles County Department of Public Health. According to Stand LA:

The report, requested by both the Los Angeles County Supervisors and the Los Angeles City Council, outlines the health impacts faced by residents living, attending school or worshiping near one of Los Angeles County’s 3,468 active oil wells, 880 of which operate in the City of Los Angeles.

The Department outlines the clear health impacts on residents living near active oil wells, including: adverse birth outcomes, increased cancer risk, eye, nose and throat irritation, exacerbation of asthma and other respiratory illnesses, neurological effects such as headaches and dizziness, gastrointestinal effects such as nausea and abdominal pain, and mental health impacts such as depression, anxiety or fatigue.

This information is, of course, nothing new. Living near oil and gas extraction activities, and specifically actively producing wells, has been shown in the literature to increase risks of various health impacts – including asthma and other respiratory diseases, cardiovascular disease, cancer, birth defects, nervous disorders and dermal irritation, among others.1

Spatial Assessment

While Los Angeles would benefit the most from any type of setback regulation due to the county and city’s high population density, the rest of the state would also benefit from the same.

We conducted an assessment of the number of California citizens living proximal to active oil and gas production wells to see who all would be affected by such a change. Population counts were estimated for individuals living within 2,500 feet of an oil and gas production well for the entire state. An interactive map of the wells that fall within 2,500 feet of a residence in California is shown just below in Figure 1.

California 2,500’ oil and gas well buffer map

View map fullscreen | How FracTracker maps work | Map Data (CSV): Aquifer Exemptions, Class II Wells

Figure 1. California 2,500’ oil and gas well buffer, above. The map shows a 2,500’ buffer around active oil and gas wells in California. Wells that are located within 1,000’; 1,500’; and 2,500’ from a residence, hospital or school are also shown in the map. The counts of individuals located within 2,500’ of an active well are displayed for census tracts.

Population Statistics

The number and percentage of California residents living within 2,500 feet of an active (producing) oil and gas well are listed below:

  • Total At-Risk Population

    859,699 individuals in California live within 2,500 feet of an active oil and gas well

  • % Non-White

    Of the total, 385,067 are “Non-white” (45%)

  • % Hispanic

    Of the total, 341,231 are “Hispanic” (40%) as defined by the U.S. Census Bureau2

We calculated population counts within the setbacks for smaller census-designated areas, including counties and census tracts. The results of the calculations are presented in Table 1 below.

Table 1. Population Counts by County

County Total Pop. Impacted Pop. Impacted % Non-White Impacted % Hispanic
Los Angeles 9,818,605 541,818 0.54 0.46
Orange 3,010,232 202,450 0.25 0.19
Kern 839,631 71,506 0.34 0.43
Santa Barbara 423,895 8,821 0.44 0.71
Ventura 823,318 8,555 0.37 0.59
San Bernardino 2,035,210 6,900 0.42 0.59
Riverside 2,189,641 5,835 0.46 0.33
Fresno 930,450 2,477 0.34 0.50
San Joaquin 685,306 2,451 0.55 0.42
Solano 413,344 2,430 0.15 0.15
Colusa 21,419 1,920 0.39 0.70
Contra Costa 1,049,025 1,174 0.35 0.30

Table 1 presents the counts of individuals living within 2,500 feet of an active oil and gas well, aggregated by county. Only the top 12 counties with the highest population counts are shown. “Impacted Population” is the count of individuals estimated to live within 2,500 feet of an oil and gas well. The “% Non-white” and “% Hispanic” columns report the estimated percentage of the impacted population of said demographic. There may be some overlap in these categories.

Conclusions

California is unique in many ways, beautiful beaches and oceans, steep mountains, massive forests, but not least of all is the intensity of the oil and gas industry. Not only are some of the largest volumes of oil extracted from this state, but extraction occurs incredibly close to homes, sometimes within communities – as shown in the photo at the top of this post.

The majority of California citizens living near active production wells are located in Los Angeles County – well over half a million people. LA County makes up 61% of Californians living within 2,500 feet of an oil and gas well, and half of them are non-white minority, people of color.

Additionally, the well sample population used in this analysis is limited to only active production wells. Much more of California’s population is exposed to pollutants from the oil and gas support activities and wells. These pollutants include acidic vapors, hydrocarbons, and diesel particulate matter from exhaust.

Our numbers are, therefore, a conservative estimate of just those living near extraction wells. Including the other activities would increase both the total numbers and the demographic percentages because of the high population density in Los Angeles.

For many communities in California, therefore, it is essentially impossible for residents to escape oil and gas pollution.


The Analysis – How it was done!

Since the focus of this assessment was the potential for impacts to public health, the analysis was limited to oil and gas wells identified as active – meaning they are producing or are viable to produce oil and/or natural gas. This limitation on the dataset was justified to remain conservative to the most viable modes of exposure to contaminants from well sites. Under the assumption that “plugged,” “buried,” or “idle” wells that are not producing (or at least reporting production figures to DOGGR) do not purvey as much as a risk of air emissions, the main route of transport for pollutants to the surrounding communities is via air emissions from “producing” oil and gas wells. The status of wells was taken from DOGGR’s “AllWells.zip” dataset (downloaded 3/7/18).

Analysis Steps:

  1. The first step was to identify oil and gas wells in California affected by 2,500’ and shorter setbacks from occupied dwellings. To achieve this, the footprints of occupied dwellings were identified, and where there was not a data source available the footprints were digitized.
  2. Using GIS tools, 2,500’ buffers were generated from the boundary of the occupied dwellings and a subset of active oil and gas wells located within the buffer zone were generated.
  3. A combination of county and city zoning data and county parcel data was used to direct the selection of building footprint GIS data and the generation of additional building footprint data. Building footprint data is readily available for a number of California cities, but was not available for rural areas.
  4. Existing footprint data was vetted using zoning codes.
  5. Areas located within 2,500’ of well-heads were prioritized for screening satellite imagery in areas zoned for residential use.

Analytical Considerations

Buildings and facilities housing vulnerable populations were also included. Vulnerable populations include people such as children, the elderly, and the immunocompromised. These areas pose an elevated risk for such sensitive populations when they live near hazardous sites, such as oil fields in LA. A variety of these types of sites were included in the GIS analysis, including schools and healthcare facilities.

GIS techniques were used to buffer active oil and gas wells at 2,500 feet. GIS shapefiles and 2010 Decennial census data was downloaded from American Fact Finder via Census.gov for the entire state of California at the census block level.2 Census block GIS layers were clipped to the 2,500-foot buffers. Population data found in Summary File 1 for the 2010 census was attached to the clipped census block GIS layers.  Adjusted population counts were calculated according to the proportion of the area of the census block falling within the 2,500’ buffer.

References

  1. Shonkoff, Seth B.C.; Hays, Jake. 2015. Toward an understanding of the environmental and public health impacts of shale gas development: an analysis of the peer-reviewed scientific literature, 2009-2014. PSE Healthy Energy.
  2. U.S. Census Bureau. 2010 Census Summary File 1.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Cover photo by Leo Jarzomb | SGV Tribune

A Hazy Future Report Cover

A Hazy Future: Pennsylvania’s Energy Landscape in 2045

Report Calculates Impacts from PA’s Planned Natural Gas Infrastructure

FracTracker Alliance released the report: A Hazy Future: Pennsylvania’s Energy Landscape in 2045 today, which details the potential future impacts of a massive buildout of Marcellus Shale wells and associated natural gas infrastructure.

Industry analysts forecast 47,600 new unconventional oil and gas wells may be drilled in Pennsylvania by 2045, fueling new natural gas power plants and petrochemical facilities in PA and beyond. Based on industry projections and current rates of consumption, FracTracker – a national data-driven non-profit – estimates the buildout would require 583 billion gallons of fresh water, 386 million tons of sand, 798,000 acres of land, 131 billion gallons of liquid waste, 45 million tons of solid waste, and more than 323 million truck trips to drilling sites.

A Hazy Future - Impact Summary

“Only 1,801 of the 10,851 unconventional wells already drilled count as a part of this projection, meaning we could see an additional 45,799 such wells in the coming decades,” commented Matt Kelso, Manager of Data and Technology for FracTracker and lead author on the report.

Why the push for so much more drilling? Out of state – and out of country – transport is the outlet for surplus production.

“The oil and gas industry overstates the need for more hydrocarbons,” asserted FracTracker Alliance’s Executive Director, Brook Lenker. “While other countries and states are focusing more on renewables, PA seems resolute to increase its fossil fuel portfolio.”

The report determined that the projected cleared land for well pads and pipelines into the year 2045 could support solar power generation for 285 million homes, more than double the number that exist in the U.S.

A Hazy Future shows that a fossil fuel-based future for Pennsylvania would come at the expense of its communities’ health, clean air, water and land. It makes clear that a dirty energy future is unnecessary,” said Earthworks’ Pennsylvania Field Advocate, Leann Leiter. Earthworks endorsed FracTracker’s report. She continued, “I hope Governor Wolf reads this and makes the right choices for all Pennsylvanians present and future.”

A Hazy Future reviews the current state of energy demand and use in Pennsylvania, calculates the footprint of industry projections of the proposed buildout, and assesses what that would look like for residents of the Commonwealth.

About FracTracker Alliance

Started in 2010 as a southwestern Pennsylvania area website, FracTracker Alliance is a national organization with regional offices across the United States in Pennsylvania, the District of Columbia, New York, Ohio, and California. The organization’s mission is to study, map, and communicate the risks of oil and gas development to protect our planet and support the renewable energy transformation. Its goal is to support advocacy groups at the local, regional, and national level, informing their actions to positively shape our nation’s energy future.

Questions? Email us: info@fractracker.org.

PA Oil & Gas Fines feature image

Pennsylvania Oil & Gas Fines Analysis

In March 2017, FracTracker Alliance conducted a review of the available Pennsylvania oil and gas fine data released publicly by the PA Department of Environmental Protection (DEP) to identify trends in industry-related fines over time and by particular operators. In total, the DEP has assessed nearly $36 million in fines to oil and gas extraction and pipeline operators since January 1, 2000. Such fines are associated with over 42,000 violations issued1 by DEP in that time frame, covering 204,000 known oil and gas locations,2 as well as 91,000 miles of pipelines3 within the Commonwealth.

Understanding the Data Structure

The amount of money that the Pennsylvania Department of Environmental Protection (DEP) fines oil and gas (O&G) operations is included in the DEP’s compliance report published on their website. Even though fines data are made available, they are not necessarily straight-forward, and caution must be taken not to over-estimate the total number of assessed fines.

Records of fines are associated with enforcement identification codes on the compliance report. A single fine is often applied to numerous violations, and the full amount of the fine is listed on every record in this subset. Therefore, the total dollar amount of fines assessed to O&G companies appears overstated. For example, if a $400,000 fine were assessed to settle a group of 10 violations, that figure will appear on the report 10 times, for an apparent aggregate of $4,000,000 in fines. To get an accurate representation of fines assessed, we need to isolate fines associated with particular enforcement ID numbers, which are used administratively to resolve the fines.

This process is further complicated by the fact that, on occasion, such enforcement ID numbers are associated with more than one operator. This issue could result from a change in the well’s operator (or a change of the operator’s name), a group of wells in close proximity that are run by different operators, or it might point to an energy extraction company and a midstream company sharing responsibility for an incident. Sometimes, the second operator listed under an enforcement ID is in fact “not assigned.” The result is that we cannot first summarize by operator and then aggregate those subtotals without overstating the total amount of the assessed fines. In all, 62 of the enforcement ID numbers apply to more than one operator, but this figure amounts to less than one percent of the nearly 15,000 distinct enforcement ID numbers issued by DEP.

Conventional & Unconventional Violations & Fines

Oil and gas wells in Pennsylvania are categorized as either conventional or unconventional, with the latter category intended to represent the modern, industrial-scaled operations that are commonly referred to as “fracking wells.” Contrastingly, conventional wells are supposed to be the more traditional O&G wells that have been present in Pennsylvania since 1859. The actual definition of these wells leaves some blurring of this distinction, however, as almost all O&G wells now drilled in Pennsylvania are stimulated with hydraulic fracturing to some degree, and some of the conventional wells are even drilled horizontally – just not into formations that are technically defined as unconventional. For the most part, however, unconventional remains a useful distinction indicating the significant scale of operations.

Table 1. Summary of oil and gas wells, violations, and fines in Pennsylvania

Category Conventional Unconventional (blank) Total
Wells 193,655 10,291 0 203,946
Violations 27,223 6,126 9,026 42,375
Fines $7,000,203 $13,689,032 $21,563,722 $35,949,495*
Fines per Violation 257 2,235 2,389 848
Fines per Well 36 1330  – 176.27
Violations per Well 0.14 0.60  – 0.21
Wells per Violation 7.11 1.68  – 4.81
* The total fine amount issued is not a summary of the three preceding categories, as some of the fines appear in multiple categories

Ninety-five (95)% of the state’s 204,000 O&G wells are classified as conventional, so it should not be surprising to see that this category of wells accounts for a majority of violations issued by the department. However, fines associated with these violations are less frequent, and often less harsh; the $7 million in fines for this category accounts for only 19% of the total assessed penalties. In contrast, the total penalties that have been assessed to unconventional wells in the state are nearly twice that of conventional wells, despite accounting for just 5% of the state’s well inventory

On the 54,412 records on the compliance report, 10,518 (19%) do not indicate whether or not it is an unconventional well. The list of operators includes some well-known conventional and unconventional drilling operators, and hundreds of names of individuals or organizations where O&G drilling is not their primary mode of business (such as municipal authorities and funeral homes). This category also contains violations for midstream operations, such as pipelines and compressor stations. Altogether, 3,795 operators have entries that were not categorized as either conventional or unconventional on the compliance report, and 124 of these operators were issued fines. One additional complication is that some of the violations and fines that fall into this category are cross-referenced in the conventional and unconventional categories, as well.

The resulting impact of these factors is that the blank category obscures the trends for violations and fines in the other two categories. While tempting to reclassify well data in this category as either conventional or unconventional, this would be a tall task due to the sheer number of records involved, and would likely result in a significant amount of errors. Therefore, the FracTracker Alliance has decided to present the data as is, along with an understanding of the complexities involved.

Most Heavily Fined Operators

Despite the numerous caveats listed above, we can get a clear look at the aggregated fines issued to the various O&G operators in the state by constructing our queries carefully. Table 2 shows the top 12 recipients of O&G-related fines assessed by DEP since 2000. Ten of these companies are on the extraction side of the business, and the total number of well permits issued4 to these companies since 2000 are included on the table. By looking at the permits instead of the drilled wells, we discover the operator that was originally associated with the drilling location, whereas the report of drilled wells associates the current operator associated with the site, or most recent operator in the event that the location is plugged and abandoned.

Stonehenge Appalachia and Williams Field Services operate in the midstream sector. Combining the various business name iterations and subsidiaries would be an enormous task, which we did not undertake here, with the exception of those near the top of the list. This includes Vantage Energy Appalachia, which was combined with records from Vantage Energy Appalachia II, and the compliance history of Rice Energy is the sum of three subsidiaries, the drilling company Rice Drilling B, and two pipeline companies, Rice Midstream Holdings and Rice Poseidon Midstream.

Table 2. Top 12 operators that have been assessed oil and gas-related fines by DEP since 2000

Operator Total Fines Conventional Permits Unconventional Permits Violations Fines / Violation Fines / Permit
Range Resources Appalachia LLC $5,717,994 2,104 2,206 819 $6,982 $1,327
Chesapeake Appalachia LLC $3,120,123 18 3,072 754 $4,138 $1,010
Rice Energy* $2,336,552 442 165 $14,161 $5,286
Alpha Shale Res LP $1,681,725 3 62 31 $54,249 $25,873
Stonehenge Appalachia LLC $1,500,000  – 294 $5,102
Cabot Oil & Gas Corp $1,407,275 19 902 726 $1,938 $1,528
CNX Gas Co LLC $1,274,330 1,613 677 387 $3,293 $556
WPX Energy Appalachia LLC $1,232,500 347 159 $7,752 $3,552
Chevron Appalachia LLC $1,077,553 2 604 113 $9,536 $1,778
Vantage Energy Appalachia LLC** $1,059,766 3 300 35 $30,279 $3,498
Williams Field Services Co, LLC $872,404  – 158 $5,522
XTO Energy Inc $739,712 1,962 461 383 $1,931 305
* Fines for Rice Energy here represent the sum of three subsidiaries, the drilling company Rice Drilling B, and two pipeline companies, Rice Midstream Holdings and Rice Poseidon Midstream.

** Fines for Vantage Energy Appalachia were combined with records from Vantage Energy Appalachia II.

Predictably, many of the entries on this list are among the most active drillers in the state, including Range Resources and Chesapeake Appalachia. However, Alpha Shale Resources has the dubious distinction of leading the pack with the highest amount of fines per violation, as well as the highest amount of fines per permit. Fitting in with the theme, the story here is complicated by the fact that Alpha had a joint venture with Rice, before selling them their stake in a group of wells and midstream operations that were fined $3.5 million by DEP.5 On this compliance report, the fines from this incident are split between the two companies.

Fines Issued Over Time

It is worth taking a look at how O&G related fines have varied over time, as well (Figure 1, shown in millions of dollars). Numerous factors could contribute to changes in trends, such as the number of available DEP inspectors,6 the amount of attention being paid to the industry in the media, differing compliance strategies employed by various political administrations, or changes in practices in the field, which could in turn be impacted by significant fines issued in the past.

PA Oil & Gas Fines Analysis chart

Figure 1. O&G Fines Issued by DEP, 2000 through 2016

The notable spike in fines issued from 2010 to 2012 corresponds with the peak of unconventional drilling in the state – 4,908 of these industrial scaled wells were drilled during those three years, amounting to 48% of all unconventional wells in PA. In contrast, only 504 unconventional wells were drilled in 2016, or around a quarter of the total for 2011. In this context, the reduction in fines since the early part of the decade seems reasonable.

The association with the number of unconventional wells falls apart a bit in the years 2013 to 2014, however. These two years saw an average of 1,293 unconventional wells drilled, but the fines issued amounted to only 35% of the 2011 total.

Considerable strides have been made in the public accessibility of oil and gas data available from the PA DEP since FracTracker started requesting and reviewing this information in 2009. Still, there are many gaps in the datasets, such as geolocation details for 10 of the 20 largest fines issued by the department. FracTracker hopes external analyses like this one will help to close such gaps and identify operators who, too, need to improve their compliance records.

References & Footnotes

  1. Pennsylvania Department of Environmental Protection (PA DEP) Oil and Gas (O&G) Compliance Database.
  2. PA DEP O&G Spud Database. Note: Starting date 1/1/1800 captures unknown spud (wells drilled) dates.
  3. Pipeline Hazardous Materials and Safety Administration (PHMSA) Pipeline Data Mart Reports.
  4. PA DEP Permits Issued Database.
  5. State Impact PA. (2016). Rice Energy fined $3.5 million for wellsite and pipeline violations.
  6. PennEnvironment Research & Policy Center. (2017). Fracking Failures 2017, Oil and Gas Industry Environmental Violations in Pennsylvania.

Oil & Gas Fines White Paper

This analysis is also available for download in a printer-friendly, white paper format:


Cover Photo by Pete Stern, Loyalsock, PA

Bird’s eye view of a sand mine in Wisconsin. Photo by Ted Auch 2013.

West Central Wisconsin’s Landscape and What Silica Sand Mining Has Done to It

By Ted Auch, Great Lakes Program Coordinator, and Elliott Kurtz, GIS Intern

The Great Lakes may see a major increase in the number of sand mines developed in the name of fracking. What impacts has the area already seen, and does future development mean for the region’s ecosystem and land use?

Introduction

Sand is a necessary component of today’s oil and gas extraction industry for use in propping open the cracks that fracking creates. Silica sand is a highly sought after proppant for this purpose and often found in Wisconsin and Michigan. At the present time here in Ohio our Utica laterals are averaging 4,300-5,000 tons of silica sand or “proppant” with demand increasing by 85+ tons per lateral per quarter.

Wisconsin’s 125+ silica sand mines and processing facilities are spread out across 15,739 square miles of the state’s West Central region, adjacent to the Minnesota border in the Northern Mississippi Valley. These mines have dramatically altered the landscape while generating proppant for the shale gas industry; approximately 2.5 million tons of sand are extracted per mine. The length of the average shale gas lateral well grows by > 50 feet per quarter, so we expect silica sand usage will grow from 5,500 tons to > 8,000 tons per lateral. To meet this increase in demand, additional mines are being proposed near the Great Lakes.

Migration of the sand industry from the Southwest to the Great Lakes in search of this silica sand has had a large impact on regional ecosystem productivity and watershed resilience[1]. The land in the Great Lakes region is more productive, from a soil and biomass perspective; much of the Southwest sandstone geology is dominated by scrublands that have accrue plant biomass at much slower rates, while the Great Lakes host productive forests and agricultural land. Great Lakes ecosystems produce 1.92 times more soil organic matter and 1.46 times more perennial biomass than Southwestern ecosystems.

Effects on the Great Lakes

Quantifying what the landscape looks like now will serve as a baseline for understanding how the silica sand industry will have altered the overall landscape, much like Appalachia is doing today in the aftermath of strip-mining and Mountaintop Removal Mining[2]. West Central Wisconsin (WCW) has a chance to learn from the admittedly short-cited and myopic mistakes of their brethren across the coalfields of Appalachia.

Herein we aim to present numbers speaking to the diversity and distribution of WCW’s “working landscape” across eight types of land-cover. We will then present numbers speaking to how the silica mining industry has altered the region to date and what these numbers mean for reclamation. The folks at UC Berkeley’s Department of Environmental Science, Policy , and Management describe “Working Landscapes” as follows:

a broad term that expresses the goal of fostering landscapes where production of market goods and ecosystem services is mutually reinforcing. It means working with people as partners to create landscapes and ecosystems that benefit humanity and the planet… A goal is finding management and policy synergies—practices and policies that enhance production of multiple ecosystem services as well as goods for the market…Collaborative management processes can help discover synergies and create better decisions and policy. Incentives can help private landowners support management that benefits society.

Methods

We used the 1993 WISCLAND satellite imagery to determine how WCW’s landscape is partitioned and then we applied these data to an updated inventory of silica sand mine boundaries to determine what existed within their boundaries prior to mining. The point locations of Wisconsin’s current inventory of silica sand mines was determined using the “Geocode Address” function in ArcMap 10.2 using the Composite_US Address Locator. Addresses were drawn from mine inventory information originally maintained by the West Central WI Regional Planning Commission (WCWRPC) and now managed by the WI Department of Natural Resources’ Mines, pits and quarries division. Meanwhile current mine extent boundary polygons were determined using one of three satellite data-sets:

  1. 2013 imagery from the USDA National Agriculture Imagery Program (NAIP),
  2. 2014 ArcMap 10.2 World Imagery, and
  3. 2014 Google Satellite.

What We Found

Land Cover Types Replaced by Silica Sand Mining

Sand-LandEffects

Fig 1. Square mileage of various land cover types replaced by silica sand mining in WCW

Thirty-nine percent of the WCW landscape is currently allocated to forests, 43% to agriculture broadly speaking, and 13% is occupied by various types of wetlands. Open waters occupy 2.6% of the landscape with tertiary uses including barren lands (1.3%), golf courses (0.03%), high and low-density urban areas (0.9%), and miscellaneous shrublands (0.6%) (See Figure 1).

Effects by Land Cover Type

Figure 2. Forest Cover in WCW

Fig 2. Forest Cover in WCW

Figure 3. Agricultural Cover

Fig 3. Agricultural Cover

Figure 4. Open Water & Wetland Cover

Fig 4. Open Water & Wetland Cover

Figure 5. Forested Wetland Cover

Fig 5. Forested Wetland Cover

Figure 6. Lowland Shrub Wetland Cover

Fig 6. Lowland Shrub Wetlands

Figure 7. Miscellaneous Cover

Fig 7. Miscellaneous Cover

Figure 2. The wood in these forests has a current stumpage value of $253-936 million and by way of photosynthesis accumulates 63 to 131 million tons of CO2 and has accumulated 4.8-9.8 billion tons of CO2 if we assumed that on average forests in this region are 65-85 years old. Putting a finer point on WCW forest cover and associated quantifiables is difficult because most of these tracts (2.7 million acres) fall within a catchall category called “Mixed Forest”. Pine (2.3% of the region), Aspen (4.7%), and Oak (3.8%) most of the remaining 1.2 million forested acres with much less sugar (Acer saccharum) and soft (Acer rubrum) maple acreage than we expected scattered in a horseshoe fashion across the Northeastern portion of the study area.

Figure 3. Seven different agricultural land-uses occupy 4.3 million WCW acres with forage crops and grasslands constituting 29% of the region followed by 1.4 million acres of row crops and miscellaneous agricultural activities. Additionally, 2% of WI’s 19,700 cranberry bog acres are within the study area generating $4.02 million worth of cranberries per year. The larger agricultural categories generate $3.2 billion worth of commodities.

Figure 4. Nearly 16% of WCW is characterized by open waters or various types of wetlands with a total area of 2,396 square miles clustered primarily in two Northeast and one Southeast segment. Open waters occupy 398 square miles with forested wetlands – possibly vernal pool-type systems – amounting to 5.4% of the region or 841 square miles. Lowland shrub and emergent/wet meadows occupy 540 and 618 square miles, respectively.

Figure 5. Of the nine types of wetlands present in this region the forested broad-leaved deciduous and emergent/wet meadow variety constitute the largest fraction of the region at 1,107 square miles (7.1% of region). Some percentage of the former would likely be defined by Wisconsin DNR as vernal pools, which do the following according to their Ephemeral Pond program. The WI DNR doesn’t include silica sand mining in its list of 14 threats to vernal pools or potential conservation actions, however.

These ponds are depressions with impeded drainage (usually in forest landscapes), that hold water for a period of time following snowmelt and spring rains but typically dry out by mid-summer…They flourish with productivity during their brief existence and provide critical breeding habitat for certain invertebrates, as well as for many amphibians such as wood frogs and salamanders. They also provide feeding, resting and breeding habitat for songbirds and a source of food for many mammals. Ephemeral ponds contribute in many ways to the biodiversity of a woodlot, forest stand and the larger landscape…they all broadly fit into a community context by the following attributes: their placement in woodlands, isolation, small size, hydrology, length of time they hold water, and composition of the biological community (lacking fish as permanent predators).

Figure 6. Broad-leaved evergreen lowland shrub wetlands constitute ≈2.1% of the region or 319 square miles with most occurring around the Legacy Boggs silica mines and several cranberry operations turned silica mines in Jackson County. Meanwhile broad-leaved deciduous and needle-leaved lowland shrub wetlands are largely outside the current extent of silica sand mining in the region occupying 1.9% of the region with 293 square miles spread out within the northeastern 1/5th of the study area.

Figure 7. Finally, miscellaneous land-covers include 200 square miles of barren land, 145 square miles of low/high intensity urban areas including the cities of Eau Claire (Pop. 67,545) and Stevens Point (Pop. 26,670) as well as towns like Marshfield, Wisconsin Rapids, Merrill, and Rib Mountain-Weston. WCW also hosts 3,204 acres (0.03% of region) worth of golf courses which amounts to roughly 21 courses assuming the average course is 157 acres. Shrublands broadly defined occur throughout 0.6% of the region scattered throughout the southeast corner and north-central sixth of the region, with the both amalgamations poised to experience significant replacement or alteration as they are adjacent to two large silica mine groupings.

Producing Mine Land-Use/Land-Cover Change

To date we have established the current extent of land-use/land-cover change associated with 25 producing silica mines occupying 12 square miles of WCW. These mines have displaced 3 square miles of forests and 7 square miles of agricultural land-cover. These forested tracts accumulated 31,446-64,610 tons of CO2 per year or 2.4-4.9 million tons over the average lifespan of a typical Wisconsin forest. These values equate to the emissions of 144,401-295,956 Wisconsinites or 2.5-5.1% of the state’s population. The annual wood that was once generated on these parcels would have had a market value of $126,097-197,084 per year. Meanwhile the above agricultural lands would be generating roughly $1.5-3.3 million in commodities if they had not been displaced.

However, putting aside measurable market valuations it turns out the most concerning result of this analysis is that these mines have displaces 871 acres of wetlands which equals 11% of all mined lands. This alteration includes 158 acres of formerly forested wetlands, 352 acres of lowland shrub wetlands, and 361 acres of emergent/wet meadows. As we mentioned previously, the chance that these wetlands will be reconstituted to support their original plant and animal assemblages is doubtful.

We know that the St. Peter Sandstone formation is the primary target of the silica sand industry with respect to providing proppant for the shale gas industry. We also know that this formation extend across seven states and approximately 8,884 square miles, with all 91 square miles overlain by wetlands in Wisconsin. To this end carbon-rich grasslands soils or Mollisols, which we discussed earlier, sit atop 36% of the St. Peter Sandstone and given that these soils are alread endangered from past agricultural practices as well as current O&G exploration this is just another example of how soils stand to be dramatically altered by the full extent of the North American Hydrocarbon Industrial Complex. The following IFs would undoubtedly have a dramatic effect on the ability of the ecosystems overlying the St. Peter Sandstone to capture and store CO2 to the extent that they are today not to mention dramatically alter the landscape’s ability to capture, store, and purify precipitation inputs.

  • IF silica sand mining continues at the rate it is on currently
  • IF reclamation continues to result in “very poor stand of grass with some woody plants of very poor quality and little value on the whole for wildlife. Some areas may be reclaimed as crop land, however it is our opinion that substantial inputs such as commercial fertilizer as well as irrigation will be required in most if not all cases in order to produce an average crop.”
  • IF the highly productive temperate forests described above are not reassembled on similar acreage to their extent prior to mining and reclamation is largely to the very poor stands of grass mentione above
    • For example: Great Lakes forests like the ones sitting atop the St. Peter Sandstone capture 20.9 tons of CO2 per acre per year Vs their likely grass/scrublands replacement which capture 10.6-12.8 tons of CO2 per acre per year… You do the math!
  • “None two sites are capable of supporting the growing of food. They grow trees and some cover grass, but that is all. General scientific research says that the reclaimed soils lose up to 75% of their agricultural productivity.”

Quote from a concerned citizen:

I often wonder what it was like before the boom, before fortunes were built on castles of sand and resultant moonscapes stretched as far as the eye could see. In the past few years alone, the nickname the “Silica Sand Capital of the World” has become a curse rather than a blessing for the citizens of LaSalle County, Illinois. Here, the frac sand industry continues to proliferate and threaten thewellbeing of our people and rural ecosystem.

Additional Testimonials

References & Resources

  1. The US Forest Service defined Watershed Resilience as “Over time, all watersheds experience a variety of disturbance events such as fires and floods [and mining]. Resilient watersheds have the ability to recover promptly from such events and even be renewed by them. Much as treating forests can make them more resilient to wildfire, watershed restoration projects can improve watershed resilience to both natural and human disturbances.”
  2. Great example: Virginia Tech’s Powell River Project

Organic farms near drilling activity in the U.S. and Ohio

The US Food, Energy, Water Interface Examined
By Ted Auch, Great Lakes Program Coordinator

With the emergence of concerns about the Food, Energy, Water (FEW) intersection as it relates to oil and gas (O&G) expansion, we thought it was time to dig into the numbers and ask some very simple questions about organic farms near drilling. Below is an analysis of the location and quantity of organic farms with heavy drilling activity in Ohio and nationally. Organic farms rely heavily on the inherent/historical quality of their soils and water, so we wanted to understand whether and how these businesses closest to O&G drilling are being affected.

Key Findings:

  1. Currently 11% of US organic farms are within US O&G Regions of Concern (ROC). However, this number has the potential to balloon to 15-31% if our respective shale plays and basins are exploitated, either partially or in full,
  2. 68-74% of these farms produce crops in states like California, Ohio, Michigan, Pennsylvania, and Texas,
  3. Issues such as soil quality, watershed resilience, and water rights are likely to worsen over time with additional drilling.

Methods

To answer this broad question, we divided organic farms in the United States into three categories, depending on whether they were within the:

  1. Core (O&G Wells < 1 mile from each other),
  2. Intermediate (1-3 miles between O&G Wells), or
  3. Periphery (3-5 miles between O&G Wells) of current activity or Regions of Concern (ROC).1

Additionally, from our experience looking at O&G water withdrawal stresses within the largely agrarian Muskingum River Watershed in OH we decided to add to the ROCs. To this end we worked to identify which sub-watersheds (5-10 miles between O&G Wells) and watersheds (10-20 miles between O&G Wells) might be affected by O&G development.

Together, distance from wells and density of development within particular watersheds make up the 5 Regions of Concern (ROCs) (Table 1).

Table 1. Five ROCs under this investigation and what they look like from a mapping perspective

Label Distance Between Wells Mapping Visual
Core < 1 mi  Table1_1
Intermediate 1-3 mi
Periphery 3-5 mi  Table1_2
Sub-Watershed 5-10 mi  Table1_3
Watershed 10-20 mi

We generated a dataset of 19,515 US organic farms from the USDA National Organic Program (NOP) by using the Geocode Address function in ArcGIS 10.2, which resulted in a 100% match for all farms.2

We also extracted soil order polygons within the above 5 ROCs using the NRCS’ STATSGO Derived Soil Order3 dataset made available to us by Sharon Whitmoyer at the USDA-NRCS-NSSC-Geospatial Research Unit and West Virginia University. For those not familiar with soil classification, soil orders are analogous to the kingdom level within the hierarchy of biological classification. Although, in the case of soils there are 12 soil orders compared to the 6 kingdoms of biology.

The National Organic Farms Map


This map shows organic farms across the U.S. that are located within the aforementioned ROCs. Data include certifying agent, whether or not the farm produces livestock, crops, or wild crops along with contact information, farm name, physical address, and specific products produced. View map fullscreen

National Numbers

Figure 1. Total and incremental number of US organic farms in the 5 O&G ROCs.

Figure 1. Total and incremental number of US organic farms in the 5 O&G ROCs.

Nationally, the number of organic farms near drilling activity within specific regions of concern are as follows (as shown in Figure 1):

  • Watershed O&G ROC – 2,140 organic farms (11% of North American organic farms)
  • Sub-Watershed O&G ROC – 1,319
  • Periphery O&G ROC – 752
  • Intermediate O&G ROC – 455
  • Core O&G ROC – 183

Ohio’s Organic Farms Near Drilling

The following key statistics stood out among the analyses for OH’s 703 (3.6% of US total) organic farms. Figures 2 & 3 show how many farms are near drilling activity and injection (disposal) wells in OH. Click the images to view fullsize graphics:

 Figure 2. OH Organic Farms Proximity to Drilling Activity

Figure 2. OH Organic Farms Proximity to Drilling Activity

 Figure 3. OH Organic Farms Proximity to Injection (Disposal) Wells

Figure 3. OH Organic Farms Proximity to Injection Wells

Potential Trends

If oil and gas extraction continues along the same path that we have seen to-date, it is reasonable to expect that we could see an increase in the number of organic farms near this industrial activity. A few figures that we have worked up are shown below:

  • 2,912 Organic Farms in the US Shale Plays (15% of total organic farms)
    • 2,044 Crop Producers, 918 Livestock operations, 41 Wild Crops
  • 6,179 in US Shale Basins (31%)
    • California, 1,334; Colorado 297; Illinois 286; Indiana 334; Iowa 239; Michigan 504; Missouri 118; New York 834; Ohio 510; Pennsylvania 449; Texas 394; Wisconsin 271
    • 4,100 Crop Producers, 1,386 Livestock operations, 61 Wild Crops
  • 1,346 in US Tight Gas Plays (7%)
    • 948 Crop Producers, 434 Livestock operations, 22 Wild Crops
  • 2,754 in US Tight Gas Basins (14%)
    • 2,010 Crop Producers, 875 Livestock operations, 48 Wild Crops

Soils at Risk Due To Shale Activity

Another way to look at these five ROCs when asking how shale gas build-out will interact with and/or influence organic farming is to look at the soils beneath these ROCs. What types of activity do they currently support? The productivity of organic farms, as well as their ability to be labeled “organic,” are reliant upon the health of their soils even more so than conventional farms. Organic farms cannot rely on synthetic fertilizers, pesticides, herbicides, or related soil amendments to increase productivity. Soil manipulation is prohibitive from a cost and options perspective. Thus, knowing what types of soils the shale industry has used and is moving towards is critical to understanding how the FEW dynamic will play out in the long-term. There is no more important variable to the organic farmer sans freshwater than soil quality and diversity.

The soils of most concern under this analysis are the Prairie-Forest Transition soils of the Great Lakes and Plains, commonly referred to as Alfisols, and the Carbon-Rich Grasslands or Mollisols (Figure 4 & 5). The latter is proposed by some as a soil order worthy of protection given our historical reliance on its exceptional soil fertility and support for the once ubiquitous Tall Grass Prairies. Both soils face a second potential wave of O&G development, with a combined 18,660 square miles having come under the influence of the O&G industry within the Core ROC and an additional 58-108,000 square miles in the Intermediate and Periphery ROCs. If the watersheds within these soils and O&G co-habitat were to come under development, total potential Alfisol and Mollisol alteration could reach 273,200 square miles. This collection of soils currently accounts for 43-47% of the Core and Intermediate O&G ROCs and would “stabilize” at 50-51% of O&G development if the watersheds they reside in were to see significant O&G exploration.

Figure 4. Prairie-Forest Transition soil - Courtesy EarthOnlineMedia

Figure 4. Prairie-Forest Transition soil – Courtesy EarthOnlineMedia

Figure 5. Carbon-Rich Grasslands soil - Courtesy USDA’s NRCS

Figure 5. Carbon-Rich Grasslands soil – Courtesy USDA’s NRCS

Figure6_BakkenSoils

Figure 6. The five soil orders within the Bakken Shale formation in Montana and North Dakota.

These same soils sit beneath or have been cleared for much of our wheat, corn, and soybean fields – not to mention much of the Bakken Shale exploration to date (Figure 6, above)

The three forest soil orders (i.e., Spodosol, Ultisol, and Andisol shown in Figures 7-9) account for 9,680-20,529 square miles of the Core and Intermediate O&G ROCs, which is 22 and 17% of those ROC’s, respectively. If we assume future exploration into the Periphery and Watershed ROC we see that forest soils will become less of a concern, dropping to 14-15% of these outlying potential plays, with the same being true for the two Miscellaneous soil types. The latter will decline from 28% to 25% of potential O&G ROCs.

Figure 7. Ultisol, - Courtesy of the University of Georgia

Figure 7. Ultisol – Courtesy of the University of Georgia

Figure 8. Spodosol - Courtesy of the Hubbard Brook Experimental Forest

Figure 8. Spodosol – Courtesy of the Hubbard Brook Experimental Forest

Figure 9. Andisol – Courtesy of USDA’s NRCS

Figure 9. Andisol – Courtesy of USDA’s NRCS

Figure 10. Histosol, - Courtesy of Michigan State University

Figure 10. Histosol, – Courtesy of Michigan State University

If peripheral exploration were to be realized, another soil type will have to fill this gap. Our analysis demonstrates this gap would be filled by either Organic Wetlands or Histosols, which currently constitute <200 and 529 square miles of the Core and Intermediate ROCs, respectively (Figure 10). For so many reasons wetland soils are crucial to the maintenance and enhancement of ecosystem services, wildlife migration, agricultural productivity, and the capture and storage of greenhouse gases. However, if O&G exploration does expand to the Periphery ROC and beyond we would see reliance on wetland soils increase nearly 15 fold (i.e., 16% of Lower 48 wetland soil acreage).

The quality of these wetlands is certainly up for debate. However, what is fact is that these wetlands would be altered beyond even the best reclamation techniques. We know from the reclamation literature that the myriad difficulties associated with reassembling prior plant wetland communities. Finally, it is worth noting that a similar uptick in O&G reliance on arid (i.e., extremely unproductive but unstable) soils is may occur with future industry expansion. These soils will, as a percent of all ROCs, increase from 7% to 9% (i.e. 10-11% of all lower 48 arid soil acreage).

What do these changes mean for the agriculture industry in OH?

If these future O&G exploration scenarios were to play out, we estimate 20-22% of Southern Acidic Forest, Prairie-Forest Transition, Miscellaneous Recent Origin, and Carbon-Rich Grassland soils will have been effected or dramatically altered due to O&G land-use/land-cover (LULC) change nationally (Figure 11). This decline in productivity is likely familiar to communities currently grappling with how to manage a dramatically different landscape post-shale introduction in counties like Bradford in PA and Carroll in OH. The effects that such alteration has had and will have on landscape productivity, wildlife habitat fragmentation, and hydrological cycles is unknown but worthy of significant inquiry.

These questions are important enough to have received a session at Ohio Ecological Food and Farming Association’s (OEFFA) 2015 conference in Granville last month and were deemed worthy of a significant grant to The FracTracker Alliance from the Hoover Foundation aimed at quantifying the total LULC footprint of the shale gas industry across three agrarian OH counties. Early results indicate that every acre of well-pad requires 5.3 acres of gathering lines along with nearly 14 miles of buried pipelines – most of which are beneath high quality wetlands. This study speaks to the potential for 20-30% of the state’s Core Utica Region – or 10-15% of the Expanded Utica Region4 – being altered by shale gas activity.

Figure 11. National distribution of soil types within the 5 ROCs under consideration: 1) Forest Soils, 2) Prairie/Agriculture soils, 3) Organic Wetlands, 4) Miscellaneous soils, 5) Dry Soils.

Figure 11. National distribution of soil types within the 5 ROCs under consideration: 1) Forest Soils, 2) Prairie/Agriculture soils, 3) Organic Wetlands, 4) Miscellaneous soils, 5) Dry Soils.

Figure 11 Description:

  • Forest Soils – Northern and Southern Acidic Forests, Volcanic Forests,
  • Prairie/Agriculture – Prairie-Forest Transition and Carbon-Rich Grasslands,
  • Organic Wetlands
  • Miscellaneous – Recent and Intermediate Origins,
  • Dry Soils – Dry Calcium Carbonite and Clay-Rich Shrink/Swell Clays

Conclusion

The current and potential interaction(s) between the O&G and organic farming industries is nontrivial. Currently 11% of US organic farms are within what we are calling O&G ROCs. However, this number has the potential to balloon to 15-31% if our respective shale plays and basins are exploited, either partially or in full. Most of these (68-74%) are crop producers in states like California, Ohio, Michigan, Pennsylvania, and Texas.

Issues such as soil quality – specifically Prairie-Forest, Carbon Rich Grasslands, and Wetland soils – watershed resilience, and water rights are likely to become of more acute regional concern as the FEW interactions become increasingly coupled. How and when this will play out is anyone’s guess, but its play out is indisputable. Agriculture is going to face many staunch challenges in the coming years, as the National Science Foundation5 wrote:

The security of the global food supply is under ever-increasing stress due to rises in both human population and standards of living world-wide. By the end of this century, the world’s population is expected to exceed 10 billion, about 30% higher than today. Further, as standards of living increase globally, the demand for meat is increasing, which places more demand on agricultural resources than production of vegetables or grains. Growing energy use, which is connected to water availability and climate change, places additional stress on agriculture. It is clear that scientific and technological breakthroughs are needed to produce food more efficiently from “farm to fork” to meet the challenge of ensuring a secure, affordable food supply.

References and Endnotes

  1. The above regions were determined by generalizing a compilation of Oil & Gas wells generated by FracTracker’s Matt Kelso last March: Over 1.1 Million Active Oil and Gas Wells in the US.
  2. An additional 69 organic farms were geo-referenced in Canada and 7,524 across the globe for a similar global analysis to come.
  3. Description of STATSGO2 Database and associated metadata here.
  4. Core Utica Regions include any county that has ≥10 Utica permits to date and Expanded Utica Region includes any county that has 1 or more Utica permits.
  5. By the Mathematical and Physical Sciences Advisory Committee – Subcommittee on Food Systems in “Food, Energy and Water: Transformative Research Opportunities in the Mathematical and Physical Sciences”