Posts

For schools and hospitals analysis, 2017

How close are schools and hospitals to drilling activity in West Virginia and Ohio?

A review of WV and OH drilling activity and its proximity to schools and medical facilities

Schools and hospitals represent places where vulnerable populations may be put at risk if they are located close to oil and gas activity. Piggybacking on some elegant work from PennEnvironment (2013) and Physicians, Scientists, and Engineers (PSE) Healthy Energy (PDF) in Pennsylvania, below is an in-depth look at the proximity of unconventional oil and gas (O&G) activity to schools and hospitals in Ohio and West Virginia.

Ohio Schools and Medical Facilities

In Ohio, presently there are 13 schools or medical facilities within a half-mile of a Utica and/or Class II injection well and an additional 344 within 2 miles (Table 1 and map below). This number increases to 1,221 schools or medical facilities when you consider those within four miles of O&G related activity.

Map of OH Drilling and Disposal Activity Near Schools, Medical Facilities

View map fullscreen | How FracTracker maps work
Explore the data used to make this map in the “Data Downloads” section at the end of this article.

Table 1. Number of OH schools and hospitals within certain distances from Utica wells

Utica Class II Injection
Well Distance (Miles) Schools Medical Facilities Schools Medical Facilities
0.5 3 1 9 0
0.5-1 19 (22) 9 (10) 16 (25) 13 (13)
1-2 79 (101)  41 (51) 88 (113) 79 (92)
2-3 84 (185) 49 (100) 165 (278) 122 (214)
3-4 85 (270) 79 (179) 168 (446) 112 (326)
4-5 92 (362) 63 (242) 196 (642) 166 (492)
5-10 388 (750) 338 (580) 796 (1,438) 584 (1,076)

Ohio’s rate of Utica lateral permitting has jumped from an average of 39 per month all-time to 66 per month in the last year. OH’s drilling activity has also begun to spread to outlying counties[1]. As such, we thought a proactive analysis should include a broader geographic area, which is why we quantified the number of schools and medical facilities within 5 and 10 miles of Utica and Class II activity (Figures 1 and 2). To this end we found that ≥50% of Ohio’s schools, both public and private, are within 10 miles of this industry. Similarly 50% of the state’s medical facilities are within 10 miles of Utica permits or Class II wells.

Footnote 1: Eleven counties in Ohio are currently home to >10 Utica permits, while 23 are home to at least 1 Utica permit.


Figures 1, 2a, 2b (above). Click to expand.

Grade Level Comparisons

With respect to grade level, the majority of the schools in question are elementary schools, with 40-50 elementary schools within 2-5 miles of Ohio Utica wells. This number spikes to 216 elementary schools within ten miles of Utica permits along with an additional 153 middle or high Schools (Figure 3). Naturally, public schools constitute most of the aforementioned schools; there are approximately 75 within five miles of Utica permits and 284 within ten miles of Utica activity (Figure 4).


Figures 3 and 4 (above). Click to expand.

Public Schools in Ohio

We also found that ~4% of Ohio’s public school students attend a school within 2 miles of the state’s Utica and/or Class II Injection wells (i.e., 76,955 students) (Table 2). An additional 315,362 students or 16% of the total public school student population, live within five miles of O&G activity.

Table 2. Number of students in OH’s public schools within certain distances from Utica and Class II Injection wells

Utica Class II Injection
Well Distance (Miles) # Schools # Students Avg # Schools # Students Avg
0.5 3 1,360 453 7 3,312 473
<1 21 7,910 377 19 7,984 420
<2 96 35,390 376 90 41,565 462
<3 169 67,713 401 215 104,752 487
<4 241 97,448 404 350 176,067 503
<5 317 137,911 435 505 254,406 504
<10 600 280,330 467 1,126 569,343 506

(Note: Ohio’s population currently stands at 11.59 million people; 2,007,667 total students).

The broadest extent of our study indicates that 42% of Ohio students attend school within ten miles of a Utica or Class II Injection well (Figure 5). As the Ohio Utica region expands from the original 11 county core to include upwards of 23-25 counties, we expect these 5-10 mile zones to be more indicative of the type of student-Utica Shale interaction we can expect to see in the near future.


Photos of drilling activity near schools, and Figure 5 (above). Click to expand.

Private Schools in Ohio

At the present time, less than one percent of Ohio’s private school students attend a school within 2 miles of Utica and/or Class II Injection wells (specifically, 208 students). An additional 11,873 students or 11% of the total student population live within five miles. When you broaden the extent, 26% of Ohio’s private primary and secondary school students attend school daily within ten miles of a Utica or Class II Injection well. Additionally, the average size of schools in the immediate vicinity of Utica production and waste activity ranges between 11 and 21 students, while those within 2-10 miles is 112-159 students. Explore Table 3 for more details.

Table 3. Number of students in Ohio’s private schools within certain distances from Utica and Class II Injection.

Utica Class II Injection
Distance from Well (Miles) # Schools # Students Avg # Schools # Students Avg
0.5 . . . 1 . .
<1 . . . 2 25 13
<2 2 22 11 9 186 21
<3 7 874 125 30 4,460 149
<4 12 1,912 159 45 6,303 140
<5 21 2,471 118 61 9,610 158
<10 60 6,727 112 135 20,836 154

West Virginia Schools and Students

Twenty-eight percent (81,979) of West Virginia’s primary and secondary school students travel to a school every day that is within two miles of the state’s Marcellus and/or Class II Injection wells.

Map of WV Marcellus Activity and Schools

View map fullscreen | How FracTracker maps work
Explore the data used to make this map in the “Data Downloads” section at the end of this article.

Compared with Ohio, 5,024 more WV students live near this industry (Table 4). An additional 97,114 students, or 34% of the West Virginia student population, live within 5 miles of O&G related wells. The broadest extent of our study indicates that more than 90% of West Virginia students attend school daily within 10 miles of a Marcellus and/or Class II Injection well.

figure6

Figure 6. West Virginia primary and secondary schools, Marcellus Shale wells, and Class II Injection wells (Note: Schools that have not reported enrollment figures to the WV Department of Education are highlighted in blue). Click image to expand.

It is worth noting that 248 private schools of 959 total schools do not report attendance to the West Virginia Department of Education, which means there are potentially an additional 69-77,000 students in private/parochial or vocational technology institutions unaccounted for in this analysis (Figure 6). Finally, we were not able to perform an analysis of West Virginia’s medical facility inventory relative to Marcellus activity because the West Virginia Department of Health and Human Resources admittedly did not have an analogous, or remotely complete, list of their facilities. The WV DHHR was only able to provide a list of Medicaid providers and the only list we were able to find was not verifiable and was limited to hospitals only.

Table 4. Number of students in WV schools within certain distances from Shale and Class II Injection wells

Marcellus Class II Injection
Distance from Well (Miles) # Sum Avg # Sum Avg
0.5 19 5,674 299 1 . .
<1 52 (71) 16,992 (22,666) 319 5 (6) 1,544 257
<2 169 (240) 52,737 (75,403) 314 16 (22) 5,032 (6,576) 299
<3 133 (373) 36,112 (111,515) 299 18 (40) 6,132 (12,708) 318
<4 88 (461) 25,037 (136,552) 296 21 (61) 5,235 (17,943) 294
<5 56 (517) 15,685 (152,237) 295 26 (87) 8,913 (26,856) 309
<10 118 (635) 37,131 (189,368) 298 228 (315) 69,339 (96,195) 305
Note: West Virginia population currently stands at 1.85 million people; 289,700 total students with 248 private schools of 959 total schools not reporting attendance, which means there are likely an additional 69-77,000 students in Private/Parochial or Vocational Technology institutions unaccounted for in this analysis.

Conclusion

A Trump White House will likely mean an expansion of unconventional oil and gas activity and concomitant changes in fracking waste production, transport, and disposal. As such, it seems likely that more complex and broad issues related to watershed security and/or resilience, as well as related environmental concerns, will be disproportionately forced on Central Appalachian communities throughout Ohio and West Virginia.

Will young and vulnerable populations be monitored, protected, and educated or will a Pruitt-lead EPA pursue more laissez-faire tactics with respect to environmental monitoring? Stay Tuned!

Analysis Methods

The radii we used to conduct this assessment ranged between ≤ 0.5 and 5-10 miles from a Utica or Marcellus lateral. This range is larger than the aforementioned studies. The point of using larger radii was to attempt to determine how many schools and students, as well as medical facilities, may find themselves in a more concentrated shale activity zone due to increased permitting. Another important, related issue is the fact that shale O&G exploration is proving to be more diffuse, with the industry exploring the fringes of the Utica and Marcellus shale plays. An additional difference between our analysis and that of PennEnvironment and PSE Healthy Energy is that we looked at identical radii around each state’s Class II Injection well inventory. We included these wells given the safety concerns regarding:

  1. their role in induced seismicity,
  2. potential water and air quality issues, and
  3. concomitant increases in truck volumes and speeds.

Data Downloads for Maps Above


By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Koontz Class II Injection Well, Trumbull County, Ohio, (41.22806065, -80.87669281) with 260,278 barrels (10,020,704 gallons) of fracking waste having been processed between Q3-2010 and Q3-2012 (Note: Q1-2016 volumes have yet to be reported!).

Ohio Shale Activity, Waste Disposal, and Public Water Supplies

Ohio is unique relative to its Appalachian neighbors in the Marcellus and Utica Shale Basins in that The Buckeye State chose to “diversify” when it came to planning for the hydraulic fracturing revolution. One of the first things financial advisers tell their clients is to “diversify, diversify, diversify.” However, this strategy is usually meant to buffer investors when certain sectors of the economy underperform. Columbus legislators took this strategy to mean that we should drill and hydraulically fracture our geology to extract oil and gas (O&G), as well as taking in vast quantities of liquid and solid O&G waste from Pennsylvania and West Virginia.

Accepting significant quantities of out-of-state waste raises several critical questions, however. How will these materials will be contained? Will such volumes require more and larger waste landfills? And will the injection of liquid brine waste into our geology (photo below) make Ohio the “Oklahoma of Appalachia” with respect to induced seismicity?


Above: Example Class II salt water disposal (SWD) wells in Ohio

Risks to Public Water Supplies

There are also mounting concerns about public water supply (PWS) security, quality, and resilience. These concerns stem from the growing uncertainty surrounding the containment of hydraulically fractured and Class II injection wells.

To begin to assess the risks involved in locating these wells near PWS’s, we compiled and incorporated as many of the state’s PWS’s into our primary Ohio maps. In this post, we explore PWS proximity to Utica drilling activity and Class II salt water disposal (SWD) wells in Ohio.

Waste Disposal & Drilling Near PWS’s

Public water chartJust how close are public water supplies to Class II waste disposal wells and permitted Utica wells? As of January 15, 2017, there are 13 PWS’s within a half-mile of Ohio’s Class II SWD wells, and 18 within a half-mile of permitted Utica wells. These facilities serve approximately 2,000 Ohioans each, with an average of 112-153 people per PWS (Tables 1 and 5). Within one mile from these wells there are 64 to 66 PWSs serving 18 to 61 thousand Ohioans. That’s an average of 285-925 residents.

Above: Photos of SWD wells from the sky

While PWSs on the 5-mile perimeter of our analysis don’t immediately conjure up water quality/quantity concerns, they may in the future; the rate of Utica and Class II permitting is likely to accelerate under a new White House administration more friendly to industry and averse to enforcing or enhancing regulatory hurdles.

A total of 960 and 699 PWSs are currently within five miles of Ohio Class II and Utica wells. These facilities service roughly 1.5 million and one-half million Ohioans each day, which is ~13% and 4% of the state, respectively. The average PWS within range of Class II wells is 37% to 330 times the average PWS within range of Utica wells.

Roland Marily Kemble Class II Salt Water Disposal Well, Muskingum County, Ohio, Muskingum River Watershed, 39.975, -81.845, 1,984,787 Barrels of Waste Disposed Between 2010 and Q3-2016

Roland Marily Kemble Class II Salt Water Disposal Well, Muskingum County, Ohio, Muskingum River Watershed, 39.975, -81.845, 1,984,787 Barrels of Waste Disposed Between 2010 and Q3-2016

Fifty-eight (58%) to 69% of the PWSs within range of Class II wells are what the Ohio EPA calls Transient Non-Community (TNC) (Table 2). TNC’s are defined by the OH EPA and OH Department of Agriculture as serving[1]:

…at least 25 different persons over 60 days per year. Examples include campgrounds, restaurants and gas stations. In addition, drinking water systems associated with agricultural migrant labor camps, as defined by the Ohio Department of Agriculture, are regulated even though they may not meet the minimum number of people or service connections.

Meanwhile 60-89% of PWS’s in the shadow of Ohio’s permitted Utica wells are of the TNC variety. Even larger percentages of these PWS’s are either Groundwater or Purchased Groundwater types. Most of the PWS’s within the range gradient we looked at are privately owned, with only handful owned by federal or state agencies (Table 6).

Above: Example Class II salt water disposal (SWD) wells in Ohio

Of the 24 hydrologic unit codes (HUCs)/watersheds that contain Class II SWD wells, the lion’s share of PWS’s within the shadow of injection wells are the Tuscarawas, Mahoning, and Walhonding (Table 3). Even the Cuyahoga River, which feeds directly in the Great Lakes, is home to up to 138 PWS’s within 5 miles of Class II SWD wells. Conversely, only 13 HUCs currently contain Ohio’s Utica wells. Like Class II-affected HUCs, we see that the Mahoning, Tuscarawas, and Cuyahoga PSW’s contain most of the PWSs of interest (Table 7).

Conclusion

Watershed security/resilience concerns are growing in Eastern Ohio. Residential and agricultural water demands are increasingly coming into conflict with the drilling industry’s growing freshwater demand. Additionally, as oil and gas drilling uses more water, we will see more brine produced (Figures 1 and 2).

This, in turn, will create more demand – on top of an already exponential trend (Figure 3) – for Ohio’s existing Class II wells from across Northern Appalachia, stretching from Southeast Ohio and West Virginia to North Central Pennsylvania.

An understanding of the links between watershed security, O&G freshwater demand, brine production, and frack waste disposal is even more critical in areas like Southeast Ohio’s Muskingum River Watershed (Figure 4).

A Dynamic Model of Water Demand Between 2000 and 2020 within the Muskingum River Watershed, Southeast Ohio, Kurtz, E. 2015

Figure 4. A Dynamic Model of Water Demand Between 2000 and 2020 within the Muskingum River Watershed, Southeast Ohio, Kurtz and Auch 2015

This is a region of the state where we have seen new water withdrawal agreements like the one below between the Muskingum River Watershed Conservancy District (MWCD) and Antero described in last week’s Caldwell Journal-Leader, Noble County, Ohio:

The [MWCD], which oversees 10 lakes in east central Ohio, approved a second short-term water sale from Seneca Lake last week. The deal, with Antero Resources, Inc., could net the district up to $9,000 a day over about a three month period, and allows Antero to draw up to 1.5 million gallons of water a day during the months of August, September and October for a total of 135 million gallons; less than one percent of the lake’s estimated volume of 14.2 billion gallons. Antero plans to use the water in its fracking operations in the area and will pay $6 per 1000 gallons drawn.

Consol Energy's Cowgill Road Impoundment, Sarahsville, Wills Creek, Noble County, Ohio, 39.8212, -81.4061

Consol Energy’s Cowgill Road Impoundment, Sarahsville, Wills Creek, Muskingum River Watershed, Noble County, Ohio, 39.8212, -81.4061

This agreement will mean an increase in new Class II SWD permits and/or discussion about converting Ohio’s thousands of other Class II wells into SWD wells. What does this change means for communities that have already seen the industry extract the equivalent of nearly 14% – and even 25-80% in several counties – of residential water from their watersheds, only to inject it 6,000+ feet into the state’s geology is unknown? (Figure 5)

It is critical that we establish and frequently revisit the spatial relationship between oil and gas infrastructure the water supplies of Appalachian Ohio. The state of national politics, federal agency oversight and administrations, growing concerns around climate change, and the fact that Southeast Ohio is experiencing more intense and infrequent precipitation events are testaments to that fact. We will be tracking these changes to Ohio’s landscape as they develop. Stay tuned.

Kleese Disposal Class II Salt Water Disposal Well, Trumbull County, Shenango/Mahoning River, 41.244, -80.641, 3,548,104 Barrels of Waste Disposed Between 2010 and Q3-2016

Kleese Disposal Class II Salt Water Disposal well from the sky, Trumbull County, Shenango/Mahoning River, 41.244, -80.641. Data suggest 3,548,104 barrels of waste have been disposed of there between 2010 and Q3-2016.


Supplemental Tables

Public Water and Class II Wells

Table 1. Number of Ohio public water supplies and population served at several intervals from Class II Injection wells

Well Distance (Miles) # Total Population Ave Served Per Well Max People Per Well
0.5 13 1,992 153 (±120) 446
<1 66 60,539 917 (±4,702) 37,456
<2 198 278,402 1,406 (±4,374) 37,456
<3 426 681,969 1,601(±8,187) 148,000
<4 681 1,086,463 1,596 (±8,284) 148,000
<5 960 1,450,865 1,511 (±7,529) 148,000

 

Table 2. Ohio public water supplies by system type, source, and ownership at several intervals from Class II Injection wells

 

Well Distance (Miles)

System Type† Source†† Ownership
 

NTNC

 

TNC

 

C

 

G

 

GP

 

S

 

SP

 

Private

 

Local

 

Fed

 

State

0.5 3 9 1 13 13
<1 11 47 8 65 1 61 5
<2 30 118 50 177 16 5 164 34
<3 76 245 105 385 32 8 351 75
<4 122 392 167 628 40 12 574 106 1
<5 162 564 234 878 30 32 19 823 135 1 1

† NTNC = Non-Transient Non-Community; TNC = Transient Non-Community; C = Community

†† G = Groundwater; GP = Purchased Groundwater; S = Surface Water; SP = Purchased Surface Water

 

Table 3. Ohio public water supplies by hydrologic unit code (HUC) at several intervals from Class II Injection wells

 

HUC Name

Well Distance (Miles)
0.5 <1 <2 <3 <4 <5
Ashtabula-Chagrin, 799 1 5 18 18 22
Black-Rocky, 859 1 1 2 2 9
Cuyahoga, 832 1 8 20 92 92 138
Grand, 811 12 30 71 71 81
Hocking, 1081 4 18 18 22
Licking, 1010 1 2 17 17 29
Little Muskingum-Middle Island, 1062 1 2 2 6
Lower Maumee, 856 2 2 4
Lower Scioto, 1091 6 6 9
Mahoning, 831 9 17 48 129 129 161
Mohican, 919 1 3 3 4
Muskingum, 1006 1 3 15 15 33
Raccoon-Symmes, 1128 1
Sandusky, 862 3 19 19 27
Shenango, 815 1 2 6 10 10 11
St. Mary’s, 934 3 5 5 7
Tiffin, 837 4 4 7
Tuscarawas, 889 1 9 76 147 147 213
Upper Ohio, 901 3 15 15 23
Upper Ohio-Shade, 1120 4 8 8 9
Upper Ohio-Wheeling, 984 1 1 4 4 5
Upper Scioto, 959 5 13 13 23
Walhonding, 906 1 11 26 69 69 101
Wills, 1009 2 3 12 12 14

 

Table 4. Ohio public water supplies by county at several intervals from Class II Injection wells

 

County

Well Distance (Miles)
0.5 <1 <2 <3 <4 <5
Ashtabula 4 9 16 19 22
Athens 1 2 2 3
Auglaize 3 5 5 7
Belmont 1 4 5 6
Carroll 2 9 20
Columbiana 1 2 6 13 20 32
Coshocton 7 8 10 13
Crawford 1
Cuyahoga 1
Delaware 1
Fairfield 4
Franklin 1 3 7
Fulton 2 4 8
Gallia 1
Geauga 8 19 33 60 71
Guernsey 2 4 10 11 11
Harrison 1 1
Henry 2 3 3
Henry 2 3
Hocking 3 10 11 13
Holmes 1 11 34 25 38 47
Jefferson 1 3 3 5
Knox 2 6 8 9
Lake 1 4 7 17 18
Licking 1 2 10 14 26
Lorain 1 4
Mahoning 3 4 13 25 37 48
Medina 1 1 1 2 5
Meigs 4 5 6 7
Morgan 1 1 1 6 17
Morrow 3 8 11 11
Muskingum 3 8 15
Noble 1 2 2 3
Perry 5 6 8
Pickaway 2 3 7 10
Portage 3 12 41 62 90 113
Seneca 1 12 17 21
Stark 1 4 20 52 121 161
Summit 2 12 26 51
Trumbull 3 7 24 32 45 61
Tuscarawas 6 10 22 24 26
Washington 1 2 4 9
Wayne 1 1 9 18 24 54
Wyandot 2 2 2 3

Public Water and Hydraulically Fractured Wells

Table 5. The number of Ohio public water supplies and population served at several intervals from hydraulically fractured Utica Wells

Well Distance (Miles) # Total Population Ave Served Per Well Max People Per Well
0.5 18 2,010 112 (±72) 31
<1 64 17,879 279 (±456) 2,598
<2 235 116,682 497 (±1,237) 8,728
<3 433 257,292 594 (±2,086) 29,787
<4 572 380,939 666 (±2,404) 29,787
<5 699 496,740 711 (±2,862) 47,348

 

Table 6. Ohio public water supplies by system type, source, and ownership at several intervals from hydraulically fractured Utica Wells

 

Well Distance (Miles)

System Type† Source†† Ownership
 

NTNC

 

TNC

 

C

 

G

 

GP

 

S

 

SP

 

Private

 

Local

 

Fed

 

State

0.5 1 16 1 17 1 18
<1 9 45 10 59 3 1 1 58 6
<2 50 137 48 216 6 3 10 206 29
<3 83 265 85 400 14 5 14 381 51 1
<4 109 352 111 534 16 7 15 504 67 1
<5 141 421 137 652 19 9 18 621 77 1

† NTNC = Non-Transient Non-Community; TNC = Transient Non-Community; C = Community

†† G = Groundwater; GP = Purchased Groundwater; S = Surface Water; SP = Purchased Surface Water

 

 

Table 7. Ohio public water supplies by hydrologic unit code (HUC) at several intervals from hydraulically fractured Utica wells

 

HUC Name

Well Distance (Miles)
0.5 <1 <2 <3 <4 <5
Black-Rocky, 859 1 4 4 4
Cuyahoga, 832 2 12 31 54 82
Grand, 811 1 15 18 23
Licking, 1010 2 2 3 3
Little Muskingum-Middle Island, 1062 2 5 10 11 11
Mahoning, 831 2 5 48 105 142 175
Muskingum, 1006 3 7 9 11
Shenango, 815 2 5 10 13 14
Tuscarawas, 889 8 28 87 140 178 220
Upper Ohio, 901 7 20 45 66 72 73
Upper Ohio-Wheeling, 984 1 13 23 27 28
Walhonding, 906 10 15 34 47
Wills, 1009 2 3 5 7 8

 

 

Table 8. Ohio public water supplies by county at several intervals from hydraulically fractured Utica wells

 

County

Well Distance (Miles)
0.5 <1 <2 <3 <4 <5
Ashtabula 1 1
Belmont 1 2 7 14 15 16
Carroll 6 20 36 43 43 43
Columbiana 4 15 45 72 80 81
Coshocton 7 10 10
Geauga 14 20 25
Guernsey 1 1 2 4 5
Harrison 2 6 16 16 16 16
Holmes 5 13 31 43
Jefferson 2 3 11 22 25 25
Knox 1 1 2 2
Licking 1 1 1 1
Mahoning 2 10 32 44 55
Medina 1 4 5 7
Monroe 2 4 6 6 6
Muskingum 1 1 1 2 3
Noble 2 2 2 2
Portage 2 8 25 49 84
Stark 2 5 40 85 110 122
Summit 6 10
Trumbull 3 23 36 53 65
Tuscarawas 1 2 15 22 28 43
Washington 3 10 12 13
Wayne 5 5 7 21

Footnote

  1. Community (C) = serve at least 15 service connections used by year-round residents or regularly serve at least 25 year-round residents. Examples include cities, mobile home parks and nursing homes; Non-Transient, Non-Community (NTNC) = serve at least 25 of the same persons over six months per year. Examples include schools, hospitals and factories.

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Shell Ethane Cracker

A Formula for Disaster: Calculating Risk at the Ethane Cracker

by Leann Leiter, Environmental Health Fellow
map & analysis by Kirk Jalbert, Manager of Community-Based Research & Engagement
in partnership with the Environmental Integrity Project

On January 18, 2016, Potter Township Supervisors approved conditional use permits for Shell Chemical Appalachia’s proposed ethane cracker facility in Beaver County, PA. A type of petrochemical facility, an ethane cracker uses energy and the by-products of so-called natural gas to make ethylene, a building block of plastics. FracTracker Alliance has produced informative articles on the jobs numbers touted by the industry, and the considerable negative air impacts of the proposed facility. In the first in a series of new articles, we look at the potential hazards of ethane cracker plants in order to begin calculating the risk of a disaster in Beaver County.

As those who stand to be affected by — or make crucial decisions on — the ethane cracker contemplate the potential risks and promised rewards of this massive project, they should also carefully consider what could go wrong. In addition to the serious environmental and human health effects, which might only reveal themselves over time, what acute events, emergencies, and disasters could potentially occur? What is the disaster risk, the potential for “losses, in lives, health status, livelihoods, assets and services,” of this massive petrochemical facility?

Known Ethane Cracker Risks

A well-accepted formula in disaster studies for determining risk, cited by, among others, the United Nations International Strategy for Disaster Reduction (UNISDR), is Disaster Risk = (Hazard x Vulnerability)/Capacity, as defined in the diagram below. In this article, we consider the first of these factors: hazard. Future articles will examine the remaining factors of vulnerability and capacity that are specific to this location and its population.

disaster-risk-infographic-websize

Applied to Shell’s self-described “world-scale petrochemical project,” it is challenging to quantify the first of these inputs, hazard. Not only would a facility of this size be unprecedented in this region, but Shell has closely controlled the “public” information on the proposed facility. What compounds the uncertainty much further is the fact that the proposed massive cracker plant is a welcome mat for further development in the area—for a complex network of pipelines and infrastructure to support the plant and its related facilities, and for a long-term commitment to continued gas extraction in the Marcellus and Utica shale plays.

williams-geismar-explosion-websize

U.S. Chemical Safety and Hazard Investigation Board, Williams Geismar Case Study, No. 2013-03-I-LA, October 2016.

We can use what we do know about the hazards presented by ethane crackers and nearby existing vulnerabilities to establish some lower limit of risk. Large petrochemical facilities of this type are known to produce sizable unplanned releases of carcinogenic benzene and other toxic pollutants during “plant upsets,” a term that refers to a “shut down because of a mechanical problem, power outage or some other unplanned event.” A sampling of actual emergency events at other ethane crackers also includes fires and explosions, evacuations, injuries, and deaths.

For instance, a ruptured boiler at the Williams Company ethane cracker plant in Geismar, Louisiana, led to an explosion and fire in 2013. The event resulted in the unplanned and unpermitted release of at least 30,000 lbs. of flammable hydrocarbons into the air, including ethylene, propylene, benzene, 1-3 butadiene, and other volatile organic chemicals, as well as the release of pollutants through the discharge of untreated fire waters, according to the Louisiana Department of Environmental Quality. According to the Times-Picayune, “workers scrambl(ed) over gates to get out of the plant.” The event required the evacuation of 300 workers, injured 167, and resulted in two deaths.

The community’s emergency response involved deployment of hundreds of personnel and extensive resources, including 20 ambulances, four rescue helicopters, and buses to move the injured to multiple area hospitals. The U.S. Chemical Safety and Hazard Investigation Board chalked up the incident to poor “process safety culture” at the plant and “gaps in a key industry standard by the American Petroleum Institute (API).” The accident shut the plant down for a year and a half.

Potential Risks & Shell’s Mixed Messages

Shell has done little to define the potential for emergencies at the proposed Beaver County ethane cracker plant, at least in materials made available to the public. Shell has revealed that general hazards include “fire, explosion, traffic accidents, leaks and equipment failures.”

However, we located numerous versions of Shell’s handout and found one notable difference among them—the brochure distributed to community members at a December 2016 public hearing held by the Pennsylvania Department of Environmental Protection (PA DEP) excluded the word “explosion” from the list of “potential safety concerns.” The difference is seen in comparing the two documents.

Figure #1 below: Excerpt of online version of a handout for Beaver County, dated May 2015, with “explosion” included in list of “potential safety concerns.” (Other Shell-produced safety documents, like the one included as an exhibit in the conditional use permit application on file with the township, and Shell’s webpage for the project, also include “explosion” in the list of hazards.)

Figure #2 below: Excerpt of handout, dated November 2016 and provided to the community at December 15, 2016 meeting, with the word “explosion” no longer included.

 

Additional hints about risks are peppered throughout the voluminous permit applications submitted by Shell to the PA DEP and Potter Township, such as references to mitigating acts of terror against the plant, strategies for reducing water contamination, and the possibility of unplanned upsets. But the sheer volume of these documents, coupled with their limited accessibility challenge the public’s ability to digest this information. The conditional use permit application submitted by Shell indicates the existence of an Emergency Response Plan for the construction phase, but the submission is marked as confidential.

Per Pennsylvania law, and as set forth in PA DEP guidelines, Shell must submit a Preparedness, Prevention, and Contingency Plan (PPC Plan) at an unspecified point prior to operation. But at that likely too-late stage, who would hear objections to the identified hazards, when construction of the plant is already a done deal? Even then, can we trust that the plan outlined by that document is a solid and executable one?

Shell’s defense of the Beaver County plant is quick to point out differences between other plants and the one to come, making the case that technical advances will result in safety improvements. But it is noteworthy that the U.S. Chemical Safety and Hazard Investigation Board attributes failures at the Williams Geismar plant, in part, to “the ineffective implementation of…process safety management programs… as well as weaknesses in Williams’ written programs themselves.” The Geismar explosion demonstrates some of the tangible hazards that communities experience in living near ethane cracker plants. It is worth noting that the proposed Beaver County facility will have about 2½ times more ethylene processing capacity than the Geismar plant had at the time of the 2013 explosion.

Opening the Floodgates

In an effort to expand our understanding of risk associated with the proposed Beaver County ethane cracker and the extent of related developments promised by industry leaders, FracTracker Alliance has constructed the below map. It shows the site of the Shell facility and nearby land marked by Beaver County as “abandoned” or “unused.” These land parcels are potential targets for future build-out of associated facilities. Two “emergency planning zones” are indicated—a radius of 2 miles and a radius of 5 miles from the perimeter of Shell’s site. These projections are based upon FracTracker’s discussions with officials at the Saint Charles Parish Department of Homeland Security and Emergency Preparedness, who are responsible for emergency planning procedures in Norco, Louisiana, the site of another Shell ethane cracker facility. The emergency zones are also noted in the 2015 Saint Charles Hazard Mitigation Plan.

Also shown on the map is an estimated route of the Falcon pipeline system Shell intends to build, which will bring ethane from the shale gas fields of Ohio and Pennsylvania. Note that this is an estimated route based on images shown in Shell’s announcement of the project. Finally, our map includes resources and sites of vulnerability, including schools, fire stations, and hospitals. The importance of these sites will be discussed in the next article of this series.

Ethane Cracker Hazards Map

View map fullscreenHow FracTracker maps work

While the site of the Shell cracker is worth attending to, it would be a mistake to limit assessments of disaster risk to the site of the facility alone. Shell’s proposed plant is but one component in a larger plan to expand ethane-based processing and use in the region, with the potential to rival the Gulf Coast as a major U.S. petrochemical hub. An upcoming conference on petrochemical construction in the region, scheduled for June 2017 in Pittsburgh, shows the industry’s commitment to further development. These associated facilities (from plants producing fertilizers to plastics) would utilize their own mix of chemicals, and their potential interactions would produce additional, unforeseen hazards. Ultimately, a cumulative impact assessment is needed, and should take into account these promised facilities as well as existing resources and vulnerabilities. The below Google Earth window gives a sense of what this regional build-out might look like.

What might an ethane cracker and related petrochemical facilities look like in Beaver County? For an idea of the potential build-out, take a tour of Norco, Louisiana, which includes Shell-owned petrochemical facilities.

Final Calculations

As discussed in the introduction, “hazard,” “vulnerability,” and “capacity” are the elements of the formula that, in turn, exacerbate or mitigate disaster risk. While much of this article has focused on drastic “hazards,” such as disastrous explosions or unplanned chemical releases, these should not overshadow the more commonplace public health threats associated with petrochemical facilities, such as detrimental impact on air quality and the psychological harm of living under the looming threat of something going wrong.

The second and third articles in this series will dig deeper into “vulnerability” and “capacity.” These terms remind us of the needs and strengths of the community in question, but also that there is a community in question.

Formulas, terminology, and calculations should not obscure the fact that people’s lives are in the balance. The public should not be satisfied with preliminary and incomplete risk assessments when major documents that should detail the disaster implications of the ethane cracker are not yet available, as well as when the full scale of future build-out in the area remains an unknown.

Much gratitude to Lisa Graves-Marcucci and Lisa Hallowell of the Environmental Integrity Project for their expertise and feedback on this article.

The Environmental Integrity Project is a nonpartisan, nonprofit watchdog organization that advocates for effective enforcement of environmental laws. 

Oil and gas production on public lands

Interactive maps show nearness of oil and gas wells to communities in 5 states

As an American, you are part owner of 640 million acres of our nation’s shared public lands managed by the federal government. And chances are, you’ve enjoyed a few of these lands on family picnics, weekend hikes or summer camping trips. But did you know that some of your lands may also be leading to toxic air pollution and poor health for you or your neighbors, especially in 5 western states that have high oil and gas drilling activity?

A set of new interactive maps created by FracTracker, The Wilderness Society, and partner groups show the threatened populations who live within a half mile of  federal oil and gas wells – people who may be breathing in toxic pollution on a regular basis.

Altogether, air pollution from oil and gas development on public lands threatens at least 73,900 people in the 5 western states we examined. The states, all of which are heavy oil and gas leasing areas, include ColoradoNew MexicoNorth DakotaUtah and Wyoming.

Close up of threat map in Colorado

Figure 1. Close up of threat map in Colorado

In each state, the data show populations living near heavy concentrations of wells. For example just northeast of Denver, Colorado, in the heavily populated Weld County, at least 11,000 people are threatened by oil and gas development on public lands (Figure 1).

Western cities, like Farmington, New Mexico; Gillette, Wyoming; and Grand Junction, Colorado are at highest risk of exposure from air pollution. In New Mexico, especially, concentrated oil and gas activity disproportionately affects the disadvantaged and minorities. Many wells can be found near population centers, neighborhoods and even schools.

Colorado: Wells concentrated on Western Slope, Front Range

Note: The threatened population in states are a conservative estimate. It is likely that the numbers affected by air pollution are higher.

In 2014, Colorado became the first state in the nation to try to curb methane pollution from oil and gas operations through comprehensive regulations that included inspections of oil and gas operations and an upgrade in oil and gas infrastructure technology. Colorado’s new regulations are already showing both environmental and financial benefits.

But nearly 16,000 people – the majority living in the northwestern and northeastern part of the state – are still threatened by pollution from oil and gas on public lands.

Many of the people whose health is endangered from pollution are concentrated in the fossil-fuel rich area of the Western Slope, near Grand Junction. In that area, three counties make up 65% of the total area in Colorado threatened by oil and gas development.

In Weld County, just northeast of Denver, more than 11,000 residents are threatened by air pollution from oil and gas production on federal lands. But what’s even more alarming is that five schools are within a half mile radius of wells, putting children at risk on a daily basis of breathing in toxins that are known to increase asthma attacks. Recent studies have shown children miss 500,000 days of school nationally each year due to smog related to oil and gas production.

State regulations in Colorado have helped improve air quality, reduce methane emissions and promote worker care and safety in the past two years, but federal regulations expected by the end of 2016 will have a broader impact by regulating pollution from all states.

New Mexico: Pollution seen from space threatens 50,000 people

With more than 30,000 wells covering 4.6 million acres, New Mexico is one of the top states for oil and gas wells on public lands. Emissions from oil and gas infrastructure in the Four Corners region are so great, they have formed a methane hot spot that has been extensively studied by NASA and is clearly visible from space.

Nearly 50,000 people in northwestern New Mexico – 40% of the population in San Juan County – live within a half mile of a well. 

Dangerous emissions from those wells in San Juan County disproportionately affect minorities and disadvantaged populations, with about 20% Hispanic, almost 40% Native American, and over 20% living in poverty.

Another hot spot of oil and activity is in southeastern New Mexico stretching from the lands surrounding Roswell to the southern border with Texas. Wells in this region also cover the lands outside of Carlsbad Caverns National Park, potentially affecting the air quality and visibility for park visitors. Although less densely populated, another 4,000 people in two counties – with around 50% of the population Hispanic – are threatened by toxic air pollution.

Wyoming: Oil and gas emissions add to coal mining pollution

Pollution from oil and gas development in Wyoming, which has about as many wells as New Mexico, is focused in the Powder River Basin. This region in the northeast of the state provides 40% of the coal produced in the United States.

Oil and gas pollution threatens approximately 4,000 people in this region where scarred landscapes and polluted waterways are also prevalent from coal mining. 

With the Obama administration’s current pause on federal coal leasing and a review of the federal coal program underway, stopping pollution from oil and gas on public lands in Wyoming would be a major step in achieving climate goals and preserving the health of local communities.

Utah: Air quality far below federal standards

Utah has almost 9,000 active wells on public lands. Oil and gas activity in Utah has created air quality below federal standards in one-third of Utah’s counties, heightening the risk of asthma and respiratory illnesses. Especially in the Uintah Basin in northeastern Utah – where the majority of oil and development occurs – a 2014 NOAA-led study found oil and gas activity can lead to high levels of ozone in the wintertime that exceed federal standards.

North Dakota: Dark skies threatened by oil and gas activity

The geology of western North Dakota includes the Bakken Formation, one of the largest deposits of oil and gas in the United States. As a result, high oil and gas production occurs on both private and public lands in the western part of the state.

Nearly 650 wells on public lands are clustered together here, directly impacting popular recreational lands like Theodore Roosevelt National Park.

The 70,000-plus-acre park – named after our president who first visited in 1883 and fell in love with the incredible western landscape – is completely surrounded by high oil and gas activity. Although drilling is not allowed in the park, nearby private and public lands are filled with active wells, producing pollution, traffic and noise that can be experienced from the park. Due to its remote location, the park is known for its incredible night sky, but oil and gas development increases air and light pollution, threatening visibility of the Milky Way and other astronomical wonders.

You own public lands, but they may be hurting you

Pollution from oil and gas wells on public lands is only a part of a larger problem. Toxic emissions from oil and gas development on both public and private lands threaten 12.4 million people living within a half mile of wells, according to an oil and gas threat map created by FracTracker for a project by Earthworks and the Clean Air Task Force.

Now that we can see how many thousands of people are threatened by harmful emissions from our public lands, it is more important than ever that we finalize strong federal regulations that will help curb the main pollutant of natural gas – methane – from being leaked, vented, and flared from oil and gas infrastructure on public lands.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

We need to clean up our air now

With U.S. public lands accounting for 1/5 of the greenhouse gas footprint in the United States, we need better regulations to reduce polluting methane emissions from the 96,000 active oil and gas wells on public lands.

Right now, the Bureau of Land Management is finalizing federal regulations that are expected by the end of 2016. These regulations are expected to curb emissions from existing sources – wells already in production – that are a significant source of methane pollution on public lands. This is crucial, since by 2018, it is estimated that nearly 90% of methane emissions will come from sources that existed in 2011.

Federal regulations by the BLM should also help decrease the risk to communities living near oil and gas wells and helping cut methane emissions by 40 to 45% by 2025 to meet climate change reduction goals.

Final regulations from the Bureau of Land Management will also add to other regulations from the EPA and guidance from the Obama administration to modernize energy development on public lands for the benefit of the American people, landscapes and the climate. In the face of a changing climate, we need to continue to monitor fossil fuel development on public lands and continue to push the government towards better protections for land, air, wildlife and local communities.


By The Wilderness Society – The Wilderness Society is the leading conservation organization working to protect wilderness and inspire Americans to care for our wild places. Founded in 1935, and now with more than 700,000 members and supporters, The Wilderness Society has led the effort to permanently protect 109 million acres of wilderness and to ensure sound management of our shared national lands.

Screenshot from Vulnerable Populations Map

Sensitive Receptors near Fracked Oil & Gas Wells

EnvironmentAmerica_reportcover

Cover of Dangerous and Close report. Click to view report

FracTracker Alliance has been working with the Frontier Group and Environment America on a nationwide assessment of “fracked” oil and gas wells. The report is titled Dangerous and Close, Fracking Puts the Nation’s Most Vulnerable People at Risk. The assessment analyzed the locations of fracked wells and identified where the fracking has occurred near locations where sensitive populations are commonly located. These sensitive sites include schools and daycare facilities because they house children, hospitals because the sick are not able to fight off pollution as effectively, and nursing homes where the elderly need and deserve clean environments so that they can be healthy, as well. The analysis used data on fracked wells from regulatory agencies and FracFocus in nine states. Maps of these nine states, as well as a full national map are shown below.

No one deserves to suffer the environmental degradation that can accompany oil and gas development – particularly “fracking” – in their neighborhoods. Fracked oil and gas wells are shown to have contaminated drinking water, degrade air quality, and sicken both aquatic and terrestrial ecosystems. Additionally, everybody responds differently to environmental pollutants, and some people are much more sensitive than others. In fact, certain sects of the population are known to be more sensitive in general, and exposure to pollution is much more dangerous for them. These communities and populations need to be protected from the burdens of industries, such as fracking for oil and gas, that have a negative effect on their environment. Commonly identified sensitive groups or “receptors” include children, the immuno-compromised and ill, and the elderly.  These groups are the focus of this new research.

 

National Map

National interactive map of sensitive receptors near fracked wells

View Map Fullscreen | How Our Maps Work

State-By-State Maps in Dangerous and Close Report

Click to view interactive maps associated with each state

Drilling Bella Romero: Children at Risk in Greeley, Colorado

By
Kirk Jalbert, Manager of Community Based Research & Engagement
Kyle Ferrar, Western Program Coordinator

Weld County, Colorado, is one of the top producing shale oil and gas regions in the United States, boasting more than 12,000 active horizontal or directional wells, which account for 50% of all horizontal or directional wells in the state. To put this into perspective, the entire state of Pennsylvania has ten times the land area with “only” 9,663 horizontal or directional wells. At the center of Weld County is the city of Greeley, population 92,889. Greeley has experienced dramatic changes in the past decade as extraction companies compete to acquire oil and gas mineral rights. Extensive housing developments on the outskirts of the city are being built to accommodate future well pads on neighboring lots. Meanwhile, a number of massive well pads are proposed within or on the border of city limits.

FracTracker visited Colorado back in November 2015 and met with regional advocacy organizations including Coloradans Against Fracking, Protect our Loveland, Weld Air and Water, and Our Longmont to determine how we could assist with data analysis, mapping, and digital storytelling. FracTracker returned in June 2016 to explore conditions unique to Weld County’s oil and gas fields. During our visit we interviewed residents of Greeley and found that one of their greatest concerns was the dangers of siting oil and gas wells near schools. While there is much more we will be publishing in coming weeks about our visit, this article focuses on one troubling project that would bring gas drilling to within 1,300ft of a public school. The proposal goes before the Weld County Commissioners on Wednesday, June 29th for final approval. As such, we will be brief in pointing out what is at stake in siting industrial oil and gas facilities near schools in Colorado and why residents of Greeley have cause for concern.

Drilling Bella Romero

On June 7th, the Weld County Planning Commission unanimously approved a proposal from Denver-based Extraction Oil & Gas to develop “Vetting 15H”—a 24-head directional well pad in close proximity to Bella Romero Academy, a middle school just outside Greeley city limits. In addition to the 24-head well pad would be a battery of wastewater tanks, separators, and vapor recovery units on an adjacent lot. The permit submitted to the Colorado Oil & Gas Conservation Commission (COGCC) also states that six more wells may be drilled on the site in the future.

As was detailed in a recent FracTracker article, Colorado regulations require a minimum setback distance of 500ft from buildings and an additional 350ft from outdoor recreational areas. In more populated areas, or where a well pad would be within 1,000ft of high occupancy buildings, schools, and hospitals, drilling companies must apply for special variances to minimize community impacts. Setbacks are measured from the well head to the nearest wall of the building. For well pads with multiple heads, each well must comply with the respective setback requirements.

bella_romero_playground

Bella Romero’s playground with Vetting 15H’s proposed site just beyond the fence.

Vetting 15H would prove to be one of the larger well pads in the county. And while its well heads remain just beyond the 1,000ft setback requirement from Bella Romero buildings, a significant portion of the school’s ballfields are within 1,000ft of the proposed site. When setbacks for the well pad and the processing facility are taken together—something not explicitly demonstrated in the permit—almost the entirety of school grounds are within 1,000ft and the school itself lies only 1,300ft from the pad. The below figures show the images supplied by Extraction Oil & Gas in their permit as well as a more detailed graphic generated by FracTracker.

 

Youth: A High Risk Population

The difference between 1,000ft and 1,300ft may be negligible when considering the risks of locating industrial scale oil and gas facilities near populated areas. The COGCC has issued 1,262 regulatory violations to drilling companies since 2010 (Extraction Oil & Gas ranks 51st of 305 operators in the state for number of violations). Some of these violations are for minor infractions such as failing to file proper paperwork. Others are for major incidents; these issues most often occur during the construction phases of drilling, where a number have resulted in explosions and emergency evacuations. Toxic releases of air and water pollution are not uncommon at these sites. In fact, the permit shows drainage and potential spills from the site would flow directly towards Bella Romero school grounds as is shown in the figure below.

Vetting 15H post-development drainage map.

Vetting 15H post-development drainage map.

A host of recent research suggests that people in close proximity to oil and gas wells experience disproportionate health impacts. Emissions from diesel engine exhaust contribute to excessive levels of particular matter, and fumes from separators generate high levels of volatile organic compounds. These pollutants decrease lung capacity and increase the likelihood of asthma attacks, cardiovascular disease, and cancer (read more on that issue here). Exposure to oil and gas facilities is also linked to skin rashes and nose bleeds.

As we’ve mentioned in our analysis of oil and gas drilling near schools in California, children are more vulnerable to these pollutants. The same amount of contaminants entering a child’s body, as opposed to an adult body, can be far more toxic due to differences in body size and respiratory rates. A child’s developing endocrine system and neural pathways are also more susceptible to chemical interactions. These risks are increased by children’s lifestyles, as they tend to spend more hours playing outdoors than adults and, when at school, the rest of their day is spent at a central location.

At the June 7th public hearing Extraction Oil & Gas noted that they intend to use pipelines instead of trucks to transport water and gas to and from Vetting 15H to reduce possible exposures. But, as residents of Greeley noted of other projects where similar promises were made and later rescinded, this is dependent on additional approvals for pipelines. Extraction Oil & Gas also said they would use electric drilling techniques rather than diesel engines, but this would not eliminate the need for an estimated 22,000 trucking runs over 520 days of construction.

Below is a table from the Vetting 15H permit that shows daily anticipated truck traffic associated with each phase of drilling. The estimated duration and operational hours of each activity are based on only 12 wells since construction is planned in two phases of 12 wells at a time. These numbers do not account for the trucking of water for completions activities, however. The figures could be much higher if pipelines are not approved, as well as if long-term trucking activities needed to maintain the site are included in the estimates.

Vetting 15H daily vehicle estimates.

Vetting 15H daily vehicle estimates from permit

 

At the Top of the Most Vulnerable List

Bella Romero Academy has the unfortunate distinction of being one of the few schools in Colorado in close proximity to a horizontal or directional well amongst 1,750 public and 90 private schools in the state. Based on our analysis, there are six public schools within 1,000ft of a horizontal or directional well. At 2,500ft we found 39 public schools and five private schools. Bella Romero is presently at the top of the list of all schools when ranked by number of well heads located within a 1,000ft buffer. An 8-head well pad is only 800ft across the street from its front door. If the Vetting 15H 24-head well pad was to be constructed, Bella Romero would be far and above the most vulnerable school within 1,000ft of a well. It would also rank 3rd in the state for well heads located within 2,500ft of a school. The tables below summarize our findings of this proximity analysis.

Colorado public schools within 1,000ft of a horizontal or directional well

Colorado public schools within 1,000ft of a horizontal or directional well

Colorado public schools within 2,500ft of a horizontal or directional well with 5 or more well heads. There are 39 schools in total.

Colorado public schools within 2,500ft of a horizontal or directional well with 5 or more well heads. There are 39 schools in total

Colorado private schools within 2,500ft of a horizontal or directional well

Colorado private schools within 2,500ft of a horizontal or directional well

The following interactive map shows which schools in Colorado are within a range of 2,500ft from a directional and horizontal well. Additional buffer rings show 1,000ft and 500ft buffers for comparison. 1,000ft was selected as this is the minimum distance required by Colorado regulations from densely populated areas and schools without requiring special variances. Environmental advocacy groups are presently working to change this number to 2,500ft. The map is zoomed in to show the area around Bella Romero. Zoom out see additional schools and click on features to see more details. [NOTE: The Colorado school dataset lists Bella Romero Academy as an elementary/middle school. Bella Romero was recently split, with the elementary school moving a few blocks west.]

Map of schools and setbacks in Colorado

View map full screen | How FracTracker maps work

Environmental Injustice

Drilling near Bella Romero is also arguably an environmental justice issue, as its student population has some of the highest minority rates in the county and are amongst the poorest. According to coloradoschoolgrades.com, Bella Romero is 89% Hispanic or Latino and 3% African American whereas, according to the U.S. Census Bureau, Greeley as a whole is 59% White and 36% Hispanic or Latino. 92% of Bella Romero’s students are also from low income families. Furthermore, according to the EPA’s Environmental Justice Screening Tool, which is used by the agency to assess high risk populations and environments, the community surrounding Bella Romero is within the 90-95% percentile range nationally for linguistically isolated communities.

Many of Bella Romero's students come from low-income communities surrounding Greeley.

Many of Bella Romero’s students come from low-income communities surrounding Greeley.

 

Implications

These statistics are significant for a number of reasons. Firstly, oil and gas permitting in Colorado only requires operators to notify residents immediately surrounding proposed well pads. This rule does not include residents who may live further from the site but send their students to schools like Bella Romero. Parents who might comment on the project would need to hear about it from local papers or neighbors, but language barriers can prevent this from occurring. Another factor we witnessed in our June visit to Latino communities in Weld County is that many students have undocumented family members who are hesitant to speak out in public, leaving them with no voice to question risks to their children.

Residents of Greeley speak out at the June 7th Planning Commission meeting.

Residents of Greeley speak out at the June 7th Planning Commission meeting

Nevertheless, at the June 7th Planning Commission hearing, Weld County administrators insisted that their decisions would not take race and poverty into consideration, which is a blatant disregard for EPA guidelines in siting industrial development in poor minority communities. Weld County’s Planning Commission claimed that their ruling on the site would be the same regardless of the school’s demographics. By comparison, another proposed Extraction Oil & Gas site that would have brought a 22-head well pad to within 1,000ft of homes in a more well off part of town was denied on a 0-6 vote by the City of Greeley’s Planning Commission earlier this year after nearby residents voiced concerns about the potential impacts. Extraction Oil & Gas appealed the ruling and Greeley City Council passed the proposal in a 5-2 vote pending additional urban mitigation area permit approval. While the Greeley Planning Commission and the Weld County Planning Commission are distinct entities, the contrast of these two decisions should emphasize concerns about fair treatment.

Conclusion

There are very real health concerns associated with siting oil and gas wells near schools.  When evaluating this project, county administrators should assess not only the immediate impacts of constructing the well pad but also the long-term effects of allowing an industrial facility to operate so close to a sensitive youth population. There are obvious environmental justice issues at stake, as well. Public institutions have a responsibility to protect marginalized communities such as those who send their children to Bella Romero. Finally, approving the Vetting 15H project would place Bella Romero far at the top of the list for schools in Colorado within 1,000ft of oil and gas wells. School board administrators should be concerned about this activity, as it will undoubtedly put their students’ health and academic performance at risk. We hope that, when the County Commissions review the proposal, these concerns will be taken into account.

Richmond, CA crude by rail protest

CA Refineries: Sources of Oil and Crude-by-Rail Terminals

CA Crude by Rail, from the Bakken Shale and Canada’s Tar Sands to California Refineries
By
Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community Based Research & Engagement

Refineries in California plan to increase capacity and refine more Bakken Shale crude oil and Canadian tar sands bitumen. However, CA’s refinery communities that already bear a disparate amount of the burden (the refinery corridor along the north shore of the East Bay) will be more impacted than they were previously. New crude-by-rail terminals will put additional Californians at risk of accidents such as spills, derailments, and explosions. Additionally, air quality in refinery communities will be further degraded as refineries change to lower quality sources of crude oil. Below we discuss where the raw crude oil originates, why people are concerned about crude-by-rail projects, and what CA communities are doing to protect themselves. We also discuss our GIS analysis, showing the number of Californians living within the half-mile blast zones of the rail lines that currently are or will be supported by the new and existing crude by rail terminal projects.

Sources of Raw Crude Oil

Sources of Refinery HAPs

Figure 1. Sources of crude oil feedstock refined in California over time (CA Energy Commission, 2015)

California’s once plentiful oil reserves of locally extracted crude are dwindling and nearing depletion. Since 1985, crude extraction in CA has dropped by half. Production from Alaska has dropped even more, from 2 million B/D (barrels per day) to around 500,000 B/D. The 1.9 million B/D refining capacity in CA is looking for new sources of fuels. Refineries continue to supplement crude feedstock with oil from other sources, and the majority has been coming from overseas, specifically Iraq and Saudi Arabia. This trend is shown in figure 1.

Predictions project that sources of raw crude oil are shifting to the energy intensive Bakken formation and Canadian Tar Sands. The Borealis Centre estimates an 800% increase of tar sands oil in CA refineries over the next 25 years (NRDC, 2015). The increase in raw material from these isolated locations means new routes are necessary to transport the crude to refineries. New pipelines and crude-by-rail facilities would be necessary, specifically in locations where there are not marine terminals such as the Central Valley and Central Coast of CA. The cheapest way for operators in the Canadian Tar Sands and North Dakota’s Bakken Shale to get their raw crude to CA’s refinery markets is by railroad (30% less than shipping by marine routes from ports in Oregon and Washington), but this process also presents several issues.

CA Crude by Rail

More than 1 million children — 250,000 in the East Bay — attend school within one mile of a current or proposed oil train line (CBD, 2015). Using this “oil train blast zone” map developed by ForestEthics (now called Stand) you can explore the various areas at risk in the US if there was an oil train explosion along a rail line. Unfortunately, there are environmental injustices that exist for communities living along the rail lines that would be transporting the crude according to another ForestEthics report.

To better understand this issue, last year we published an analysis of rail lines known to be used for transporting crude along with the locations of oil train incidents and accidents in California. This year we have updated the rail lines in the map below to focus on the Burlington Northern Santa Fe (BNSF) and Union Pacific (UP) railroad lines, which will be the predominant lines used for crude-by-rail transport and are also the focus of the CA Emergency Management Agency’s Oil by Rail hazard map.

The specific focus of the map in Figure 2 is the five proposed and eight existing crude-by-rail terminals that allow oil rail cars to unload at the refineries. The eight existing rail terminals have a combined capacity of 496,000 barrels. Combined, the 15 terminals would increase CA’s crude imports to over 1 million B/D by rail. The currently active terminals are shown with red markers. Proposed terminals are shown with orange markers, and inactive terminals with yellow markers. Much of the data on terminals was taken from the Oil Change International Crude by Rail Map, which covers the entire U.S.

Figure 2. Map of CA Crude by Rail Terminals

View Map Fullscreen | How Our Maps Work | Download Rail Terminal Map Data

Additional Proposals

The same type of facility is currently operating in the East Bay’s refinery corridor in Richmond, CA. The Kinder Morgan Richmond terminal was repurposed from handling ethanol to crude oil, but with no public notice. The terminal began operating without conducting an Environmental Impact Report (EIR) or public review of the permit. Unfortunately, this anti-transparent process was similar to a tactic used by another facility in Kern County. The relatively new (November 2014) terminal in Taft, CA operated by Plains All American Pipeline LLC also did not conduct an EIR, and the permit is being challenged on the grounds of not following the CA Environmental Quality Act (CEQA).

EIRs are an important component of the permitting process for any hydrocarbon-related facility. In April 2015 in Pittsburg, for example, a proposed 50,000 B/D terminal at the WesPac Midstream LLC’s railyard was abandoned due to community resistance and criticism over the EIR from the State Attorney General, along with the larger proposal of a 192,000 B/D marine terminal.

Still, many other proposals are in the works for this region. Targa Resources, a midstream logistics company, has a proposed a 70,000 B/D facility in the Port of Stockton, CA. Alon USA has a permitted project for revitalizing an idle Bakersfield refinery because of poor economics and have a permit to construct a two-unit train/day (150,000 B/D) offloading facility on the refinery property. Valero dropped previous plans for a rail oil terminal at its Wilmington refinery in the Los Angeles/Long Beach port area, and Questar Pipeline has preliminary plans for a  rail oil terminal in the desert east of the Palm Springs area for a unit-train/day.

Air Quality Impacts of Refining Tar Sands Oil

Crude-by-rail terminals bring with them not only the threat of derailments and the risk of other such accidents, but the terminals are also a source of air emissions. Terminals – both rail and marine – are major sources of PAH’s (polycyclic aromatic hydrocarbons). The Sacramento Valley Railroad (SAV) Patriot rail oil terminal at a business park on the former McClellan Air Force Base property actually had its operating permit withdrawn by Sacramento air quality regulators due to this issue (read more). The terminal was unloading and reloading oil tanker cars.

FracTracker’s recent report, Emissions in the Refinery Corridor, shows that the refineries in this region are the major point source for emissions of both cancer and non-cancer risk drivers in the region. These air pollution sources get worse, however. According to the report by NRDC, changing the source of crude feedstock to increased amounts of Canadian Tar Sands oil and Bakken Shale oil would:

… increase the levels of highly toxic fugitive emissions; heavy emissions of particulate, metals, and benzene; result in a higher risk of refinery accidents; and the accumulation of petroleum coke* (a coal-like, dusty byproduct of heavy oil refining linked to severe respiratory impacts). This possibility would exacerbate the harmful health effects faced by the thousands of low-income families that currently live around the edges of California’s refineries. These effects are likely to include harmful impacts to eyes, skin, and the nervous and respiratory systems. Read NRDC Report

Petroleum coke (petcoke) is a waste product of refining tar sands bitumen (oil), and will burden the communities near the refineries that process tar sands oil. Petcoke has recently been identified as a major source of exposures to carcinogenic PAH’s in Alberta Canada (Zhang et al., 2016). For more information about the contributions of petcoke to poor air quality and climate change, read this report by Oil Change International.

The contribution to climate change from accessing the tar sands also needs to be considered. Extracting tar sands is estimated to release on average 17% average more green-house gas (GHG) emissions than conventional oil extraction operations in the U.S., according to the U.S. Department of State. (Greenhouse gases are gases that trap heat in the atmosphere, contributing to climate change on a global scale.) The refining process, too, has a larger environmental / public health footprint; refining the tar sands to produce gasoline or diesel generates an average of 81% more GHGs (U.S. Dept of State. Appendix W. 2015). In total this results in a much larger climate impact (NRDC, NextGen Climate, Forest Ethics. 2015).

Local Fights

People opposed to CA crude by rail have been fighting the railway terminal proposals on several fronts. In Benicia, Valero’s proposal for a rail terminal was denied by the city’s Planning Commission, and the project’s environmental impact report was denied, as well. The city of Benicia, however, hired lawyers to ensure that the railway projects are built. The legality of railway development is protected regardless of the impacts of what the rails may be used to ship. This legal principle is referred to as “preemption,” which means the federal permitting prevents state or local actions from trying to limit or block development. In this case, community and environmental advocacy groups such as Communities for a Better Environment, the Natural Resources Defense Council, and the Stanford-Mills Law Project all agree the “preemption” doctrine doesn’t apply here. They believe preemption does not disallow the city or other local governments from blocking land use permits for the refinery expansion and crude terminals that unload the train cars at the refinery.  The Planning Commission’s decision is being appealed by Valero, and another meeting is scheduled for September, 2016.

The fight for local communities along the rail-lines is more complicated when the refinery is far way, under the jurisdiction of other municipalities. Such is the case for the Phillips 66 Santa Maria Refinery, located on California State Highway 1 on the Nipomo Mesa. The Santa Maria refinery is requesting land use permits to extend track to the Union Pacific Railway that transits CA’s central coast. The extension is necessary to bring the rail cars to the proposed rail terminal. This project would not just increase traffic within San Luis Obispo, but for the entirety of the rail line, which passes directly through the East Bay. The project would mean an 80-car train carrying 2 million gallons of Bakken Crude would travel through the East Bay from Richmond through Berekely and Emeryville to Jack London Square and then south through Oakland and the South Bay.  This would occur 3 to 5 times per week. In San Luis Obispo county 88,377 people live within the half-mile blast zone of the railroad tracks.

In January, the San Luis Obispo County Planning Department proposed to deny Phillips 66 the permits necessary for the rail spur and terminals. This decision was not easy, as Phillips 66, a corporation ranked Number 7 on the Fortune 500 list, has fought the decision. The discussion remained open with many days of meetings, but the majority of the San Luis Obispo Planning Commission spoke in favor of the proposal at a meeting Monday, May 16. There is overwhelming opposition to the rail spur project coming from 250 miles away in Berkeley, CA. In 2014, the Berkeley and Richmond city councils voted to oppose all transport of crude oil through the East Bay. Without the rail spur approval, Phillips 66 declared the Santa Maria refinery would otherwise transport oil from Kern County via 100 trucks per day. Learn more about this project.

GIS Analysis

GIS techniques were used to estimate the number of Californians living in the half mile “at risk” blast zone in the communities hosting the crude-by-rail lines. First, we estimated the total population of Californians living a half mile from the BNSF and UP rail lines that could potentially transport crude trains. Next, we limited our study area to just the East Bay refinery corridor, which included Contra Costa and the city of Benicia in Solano County. Then, we estimated the number of Californians that would be living near rail lines if the Phillips 66 Santa Maria refinery crude by rail project is approved and becomes operational. The results are shown below:

  1. Population living within a half mile of rail lines throughout all of California: 6,900,000
  2. Population living within a half mile of rail lines in CA’s East Bay refinery communities: 198,000
  3. Population living within a half mile of rail lines along the UP lines connecting Richmond, CA to the Phillips 66 Santa Maria refinery: 930,000

CA Crude by Rail References

  1. NRDC. 2015. Next Frontier for Dangerous Tar Sands Cargo:California. Accessed 4/15/16.
  2. Oil Change International. 2015. Rail Map.
  3. Global Community Monitor. 2014. Community Protest Against Crude Oil by Rail Blocks Entrance to Kinder Morgan Rail Yard in Richmond
  4. CEC. 2015. Sources of Oil to California Refineries. California Energy Commission. Accessed 4/15/16.
  5. Zhang Y, Shotyk W, Zaccone C, Noernberg T, Pelletier R, Bicalho B, Froese DG, Davies L, and Martin JW. 2016. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region. Environmental Science and Technology. 50 (4), pp 1711–1720.
  6. U.S. Dept of State. 2015. Final Supplemental Environmental Impact Statement for Keystone XL Pipeline. Accessed 5/15/16.
  7. U.S. Dept of State. 2015. Appendix W Environmental Impact Statement for Keystone XL Pipeline Appendix W. Accessed 5/15/16.
  8. NRDC, NextGen Climate, Forest Ethics. 2015. West Coast Tar Sands Invasion. NRDC 2015. Accessed 4/15/16.

** Feature image of the protest at the Richmond Chevron Refinery courtesy of Global Community Monitor.

Flooded well and toppled oil storage tanks in Weld County, Colorado 2013. Rick Wilking/Reuters

Oil and Gas Flood Contamination Risk Incalculable on CO Front Range

By Sierra Shamer, Visiting Scholar, FracTracker Alliance

Historic 2013 flooding in the Colorado Front Range damaged homes, bridges, roads, and other infrastructure — including hundreds of oil and gas facilities. Companies shut down wells and scrambled to contain spills in their attempts to prevent extensive water contamination. Colorado has since adopted new regulations that require oil and gas companies to identify and secure all infrastructures located within floodplains. However, FEMA’s Flood Hazard maps, which the state uses to calculate flood risk, are largely incomplete, leaving only the industry accountable for reporting facilities that may be at risk in future flooding events. This article highlights the unknown flood contamination risk threatening the Front Range by oil and gas, and the featured map identifies known floodplain infrastructure.

Front Range Realities

CO Front Range counties re: flood contamination risk

Counties of the Colorado Front Range

The Colorado Front Range is the most populated region of the state, covering 17 counties and 7 cities including Boulder, Denver, and Colorado Springs. This region has experienced devastating flash flooding events throughout history, most notably the Big Thompson flood of 1976, which dumped 12-14 inches of rain along the Front Range in only 4-6 hours. The 2013 Colorado Front Range Flood brought almost 15 inches to the region, 9 of which falling within a period of 24 hours. A state of emergency was declared in the region and recovery projects continue to this day.

The Front Range region is not only one of the most populated in Colorado, it is also home to 40% of Colorado’s oil and gas wells. Oil and gas development occurs so rapidly that data reports on pending permits, active permits, and well locations are updated daily by the Colorado Oil and Gas Conservation Commission (COGCC). The damage to oil and gas facilities due to the 2013 floods prompted the COGCC to adopt Rule 603.h, requiring companies to identify proposed and current infrastructure within the floodplain and to create flood mitigation and response plans. On April 1st of this year, all companies with existing infrastructure must comply with Rule 603.h. With over 109,000 wells in the state, an incomplete FEMA database, and only 22 field inspectors, the COGCC has limited capacity to ensure these reports identify all infrastructure within the floodplain.

FEMA Floodplain Gaps

The Federal Emergency Management Agency (FEMA) maintains a national map of the 100-year floodplain for insurance determinations that are in the process of being digitized. These maps show the extent of flooding expected from rain events with a 1% chance of occurring in any given year. They are determined by a combination of topography, satellite imagery, and maps from local jurisdictions. However, in many portions of the western US, these mapped areas are incomplete, including large regions of Colorado. FEMA maps are also the primary floodplain data source used by industry and the by the COGCC. The map below shows the oil and gas infrastructure that is located within the known digital 100-year floodplain as of early February 2016. This map underrepresents the actual number of facilities within the floodplains due to incomplete FEMA data, but provides a clear visual of a widespread problem.

Known Floodplain Infrastructure Map

View full screen map | How to work with our maps | Download map data

Although FEMA is routinely working to update their dataset, large regions with widespread extraction remain digitally unmapped. While there is accessible floodplain info for the companies to use to determine their status and for the COGCC to verify what the industry reports, the incomplete digitized FEMA data means there is no accessible or efficient way for the COGCC to know if there is infrastructure within a floodplain that hasn’t been reported. This means that more is at risk here than we can calculate. Weld County, a Front Range county and recipient of severe flooding in 2013, starkly exemplifies this reality. In the aftermath of the 2013 flood, Weld County became a disaster zone when 1,900 oil and gas wells were shut down, submerged completely by the rushing water, as thousands of gallons of oil drained out. Until January 2016, Weld County lacked digitally mapped floodplains, and currently only 16% of the river and stream network is available.

The table below lists the percentages of oil and gas infrastructure that exist in Weld County alone that can be calculated using this limited dataset. As of February of this year, 3,475 wells of 35,009 are within the known floodplain in Weld County. Of greater concern, 74% of pending permits statewide are in Weld County – 5% of those in the known floodplain – indicating either an underestimation of flood risk, a blatant disregard of it, or both.

table_v2

Flooding in the Future

According to the CO Climate Change Vulnerability Study, the state expects a 2.5–5 degree Fahrenheit annual temperature increase by 2050. While this increase is likely to cause earlier spring runoff, more rain at lower elevations, and higher evaporation rates, it is unclear if annual precipitation will increase or decrease with rising temperatures. This uncertainty makes it difficult to know if increased flood risk is in the future. Current flood risk, however, is a known threat. The CO Department of Public Safety’s Flood Hazard Mitigation Plan calculates, based on historical events, that Colorado experiences a flood disaster once every five years. This means that each year, there is a 20% chance a major flood will occur. With incomplete data, limited oversight, and uncertain future trends, oil and gas flood contamination risk is incalculable – and on the Front Range, the majority of Colorado’s population, extractive industry, and environment are in danger.

Dealing with the Unknown

The unknown risks of climate change and known risks of historical flood trends emphasize that identifying oil and gas infrastructure in floodplains must be a high priority for the COGCC. These realities also put into question whether or not future infrastructures should be permitted within floodplains at all. In April, floodplain infrastructure will be identified by the industry and when these data are made available, a more accurate analysis of risk will me made.

Feature photo shows a flooded well and toppled oil storage tanks in Weld County, Colorado 2013 – by Rick Wilking/Reuters.

Drilling rig in Ohio, December 2015

Ohio Shale Country Listening Project Part 1

Listening Project Partners: CURE, OOC, & FracTracker

The below industry quote divides the world into two camps when it comes to horizontal hydraulic fracturing: those who are for it and those who are against it:

Fracking has emerged as a contentious issue in many communities, and it is important to note that there are only two sides in the debate: those who want our oil and natural resources developed in a safe and responsible way; and those who don’t want our oil and natural gas resources developed at all.
– Energy from Shale (an industry-supported public relations website)

The writer imagines a world in black and white – with a clear demarcation line. In reality, it is not so simple, at least not when talking to the people who actually live in the Ohio towns where fracking is happening. They want the jobs that industry promises, but they worry about the rising costs of housing, food, and fuel that accompany a boomtown economy. They want energy independence, but worry about water contamination. They welcome the opening of new businesses, but lament the constant rumble of semi-trucks down their country roads. They are eager for economic progress, but do not understand why the industry will not hire more locals to do the work.

In short, the situation is complicated and it calls for a comprehensive response from Ohio’s local and state policy makers.

Through hefty campaign contributions and donations to higher learning institutions, the oil and gas industry exerts undue influence on Ohio’s politics and academic institutions. Many media outlets covering the drilling boom also have ties to the industry. Therefore, industry has been able to control the message and the medium. Those who oppose oil and gas in any way are painted as radicals. Indeed, some of Ohio’s most dedicated anti-fracking activists are unwavering in their approach. But most of the people living atop the Utica Shale simply want to live peacefully. Many would be willing to co-exist with the industry if their needs, concerns, and voices were heard.

This project attempts to give these Ohioans a voice and outsiders a more accurate representation about life in the Utica Shale Basin. The report does not engage in the debate about whether or not fracking should occur – but, rather, examines the situation as we currently find it.

Listening Project Summary

The Ohio Shale Country Listening Project is a collaborative effort to solicit, summarize, and share the perspectives and observations of those directly experiencing the shale gas boom in eastern Ohio. The project is led by the Ohio Organizing Collaborative (OOC)’s Communities United for Responsible Energy (CURE), with support from the Ohio Environmental Council (OEC), FracTracker Alliance, and the Laborers Local 809 of Steubenville. Policy Matters Ohio and Fair Shake Environmental Legal Services offered resources and time in drafting the final policy recommendations.

Over the course of six months, organizers from the Laborers Local 809 and OOC worked with a team of nearly 40 volunteers to survey 773 people living in the heart of Utica Shale country. Respondents are from eastern Ohio, ranging from as far north as Portage County to as far south as Monroe County. A small number of respondents hail from across the border in West Virginia and Pennsylvania, but the overwhelming majority are from Carroll (321), Columbiana (230), Jefferson (70), Harrison (30) and Belmont (28) counties.

Respondents were asked to talk about their family and personal history in the community where they live, their favorite things about their community and what changes they have noticed since the arrival of shale gas drilling using horizontal hydraulic fracturing or fracking. They were also asked to describe their feelings about oil and gas development as either positive or negative and what they believed their community would be like once the boom ends. Finally, respondents were also asked how concerned or excited they are about 11 possible outcomes or consequences of fracking.

Summary of Recommendations

  • Create incentives for companies to hire local workers; and increase transparency about who drilling and subcontracting companies are employing
  • Tax the oil and gas industry fairly with a severance tax rate of at least 5%; use this revenue to support affected communities to mitigate the effects of the boom and bust cycle
  • Increase the citizen participation in county decision-making on how additional sales tax or severance tax revenue is spent and how the county deals with the effects of the drilling boom
  • Increase transparency around production and royalties for landowners and the public
  • Set aside funding at the local level for air and water monitoring programs
  • Mitigate noise and emissions as much as possible with mandatory sound barriers and green completion on all fracking wells
  • Create mechanisms to protect sensitive areas from industry activity
  • Levy municipal impact fees to address issues associated with drilling
  • Better protect landowners during leasing negotiation process and from potential loss of income due to property damage

Conclusion

The more shale gas wells a community has, the less popular the oil and gas industry appears to be. Carroll County is the most heavily drilled county in Ohio, and more than half the respondents said they view the drilling boom negatively. Moreover, many residents say they are not experiencing the economic benefits promised by the oil and gas industry. They see rent, cost of gas, and groceries rising as the drilling and pipeline companies hire workers from out of state and sometimes even out of the country. Residents see more sales tax revenue coming into their counties but also see their roads destroyed by large trucks. They say they are experiencing more traffic delays and accidents than ever before. Ohioans love their community’s pastoral nature but are watching as the landscape and cropland get destroyed. As it is playing out now, the boom in shale gas drilling is not fulfilling the promises made by industry. Locals feel less secure and more financially strapped. Many feel their towns will soon be uninhabitable. It is up to state and local governments to hold industry accountable and make it pay for the impacts it creates.

Infrastructure associated with horizontal hydraulic fracturing. Images from Ted Auch and FracTracker’s Oil & Gas Photos Archive:

Inception & Evolution of the Listening Project

The Ohio Shale Country Listening Project started in February 2014 with a conversation between Ohio Organizing Collaborative (OOC) staff and a veteran organizer who once worked on mountain top removal in a large region of West Virginia. The OOC organizer lamented the difficulty of organizing across a large geography around a specific issue – in this case, fracking. How do you find out what the people want without dictating to the community? The more experienced organizer immediately responded: What about a listening project? She connected OOC to the Shalefield Organizing Project in Pennsylvania whose organizers helped OOC think through what a listening project might look like in Ohio.

The project took on several iterations. First, OOC planned to focus the listening project solely on Columbiana County, which at the time was the third most fracked county in Ohio. Next, community leaders in Carroll County, the most heavily drilled county in the state, suggested the project also focus there. Eventually, as it became clear that the shale play was moving further south in Ohio, the project expanded into other counties such as Belmont, Harrison, and Jefferson. While attending a public hearing on pipeline construction in Portage County, OOC staff met an organizer from the Laborers Local 809 out of Steubenville. The organizer expressed interest in joining the project. Meanwhile, OOC had been in discussions with the Ohio Environmental Coalition (OEC) about the need to share the stories of people living in the middle of a fracking boom. OEC agreed to join the project. Finally, FracTracker also came into the fold, eager to assist in analyzing and mapping data gathered during the effort.

ListeningProject_Volunteer

A listening project volunteer surveys a shopper at Rogers Open Air Market

OOC staff solicited the help from about 40 volunteers to form the “Listening Project Team” who surveyed their friends, family, coworkers, and neighbors. Volunteers met four times over the course of six months to discuss the project and strategize about how to reach more people with the survey. Most of the volunteer team came from Columbiana and Carroll Counties. The Laborers Local 809 also distributed the surveys to their members. Members of the team canvassed neighborhoods, attended local festivals, set up a booth at Rogers Open Air Market (photo left) and distributed an online version of the survey through Facebook and email. OOC staff spoke at college classes at Kent State-Salem and Kent State-East Liverpool, and solicited input from students in attendance.

Listening project respondents by location

The project’s initial goal was to hit a target of 1,000 – 1,500 survey responses. In the end the team fell short of this number, but were able to reach 773 people living in the Utica Shale area. This barrier is mostly due to the rural nature of the communities surveyed, which makes it more difficult to reach a large number of people in a short timeframe. The most responses came from Carroll County – 321 surveys. Columbiana County represented the second largest group of respondents with 230 surveys. Seventy people from Jefferson County, 30 people from Harrison County, 28 from Belmont County filled out the survey. The final 80 responses came from Mahoning, Stark, Summit and Tuscarawas Counties. Finally, nearly fifty responses came from Pennsylvania and West Virginia residents who live along the Ohio border (see Figure right). We promised survey respondents that all names and information would be kept confidential with survey responses presented only in aggregate.

Oil train decoupled, January 2016, Pittsburgh PA

Oil Train Decoupled in Pittsburgh, No Injuries

Dangerously Close Call

Today a train carrying oil products decoupled, or separated, in the City of Pittsburgh. Collaborators at CMU report that this morning an oil train decoupled along the tracks that run past the Bellefield boiler and under Forbes Avenue in Oakland, a very populated section of the city. While no spills, explosions, or injuries were reported, concerns remain.

This train was carrying a significant number of cars either marked with 1075 or 3295 hazard placards – flammable liquids and gases produced during oil and gas drilling. We’ve discussed the risks associated with oil trains on several occasions on FracTracker. We have not previously mentioned the 3295 hazmat placard, however, which is apparently used to identify condensate. More and more train cars hosting 3295 placards have been passing through Pittsburgh in recent months, observers report.

The cars on this train were likely full, based on the train’s direction (bound for refineries on the East Coast). While it is difficult to tell given available data, these kinds of trains generally originate from Western PA, Ohio, as well as the Bakken shale formation in North Dakota.

Fortunately, the coupling broke while the train was headed uphill. For residents living in Junction Hollow, the brakes on the disconnected part of the train worked properly. If the brakes had failed, this portion of the train could have rolled downhill and derailed at the first turn in the hollow. A similar situation – with much more disastrous results – occurred in 2013 in Lac-Mégantic, Quebec.

Train Incident Photos (Submitted by CMU)

This video taken of the train passing once it was reconnected with the engine shows the sheer quantity of hydrocarbons being hauled through the city. (Randy Sargent of CMU’s CREATE Lab, identifies each of the car’s hazard placards as the train passes his office).