Posts

Photo by Evan Collins and Rachel Wadell

These Fish Weren’t Playing Opossum (Creek)

A First-hand Look at the Recent Statoil Well Pad Fire

By Evan Collins and Rachel Wadell, Summer Research Interns, Wheeling Jesuit University

Statoil well pad fire 2205-crop

Monroe Co. Ohio – Site of June 2014 Statoil well pad fire

After sitting in the non-air-conditioned lab on a muggy Monday afternoon (June 30, 2014), we were more than ready to go for a ride to Opossum Creek after our professor at Wheeling Jesuit University mentioned a field work opportunity. As a researcher concerned about drilling’s impacts, our professor has given many talks on the damaging effects that unconventional drilling can have on the local ecosystem. During the trip down route 7, he explained that there had been a serious incident on a well pad in Monroe County, Ohio (along the OH-WV border) on Saturday morning.

About the Incident

Hydraulic tubing had caught fire at Statoil’s Eisenbarth well pad, resulting in the evacuation of 20-25 nearby residents.1 Statoil North America is a relatively large Norwegian-based company, employing roughly 23,000 workers, that operates all of its OH shale wells in Monroe County.2 The Eisenbarth pad has 8 wells, 2 of which are active.1 However, the fire did not result from operations underground. All burning occurred at the surface from faulty hydraulic lines.

Resulting Fish Kill?

Photo by Evan Collins and Rachel Wadell

Several fish from the reported fish kill of Opossum Creek in the wake of the recent well pad fire in Monroe County, OH.

When we arrived at Opossum Creek, which flows into the Ohio River north of New Martinsville, WV, it smelled like the fresh scent of lemon pine-sol. A quick look revealed that there was definitely something wrong with the water. The water had an orange tint, aquatic plants were wilting, and dozens of fish were belly-up. In several shallow pools along the creek, a few small mouth bass were still alive, but they appeared to be disoriented.  As we drove down the rocky path towards the upstream contamination site, we passed other water samplers. One group was from the Center for Toxicology and Environmental Health (CTEH). The consulting firm was sampling for volatile organic compounds, while we were looking for the presence of halogens such as Bromide and Chloride. These are the precursors to trihalomethanes, a known environmental toxicant.

Visiting the Site

After collecting water samples, we decided to visit the site of the fire. As we drove up the ridge, we passed another active well site. Pausing for a break and a peek at the well, we gazed upon the scenic Appalachian hillsides and enjoyed the peaceful drone of the well site. Further up the road, we came to the skeletal frame of the previous Statoil site. Workers and members of consulting agencies, such as CTEH, surrounded the still smoking debris. After taking a few pictures, we ran into a woman who lived just a half-mile from the well site.  We asked her about the fire and she stated that she did not appreciate having to evacuate her home. Surrounding plants and animals were not able to be evacuated, however.

Somehow the fish living in Opossum Creek, just downhill from the well, ended up dead after the fire. The topography of the area suggests that runoff from the well would likely flow in a different direction, so the direct cause of the fish kill is still obscure. While it is possible that chemicals used on the well pad ran into the creek while the fire was being extinguished, the OH Department of Natural Resources “can’t confirm if it (the fish kill) is related to the gas-well fire.”3  In reference to the fire, a local resident said “It’s one of those things that happens. My God, they’re 20,000 feet down in the ground. Fracking isn’t going to hurt anything around here. The real danger is this kind of thing — fire or accidents like that.”4

Lacking Transparency

WV 2014 Photo by Evan Collins and Rachel Wadell

Run by Statoil North America, Eisenbarth well pad in Monroe County, Ohio is still smoking after the fire.

Unfortunately, this sentiment is just another example of the general public being ill-informed about all of the aspects involved in unconventional drilling. This knowledge gap is largely due to the fact that oil and gas extraction companies are not always transparent about their operations or the risks of drilling. In addition to the potential for water pollution, earthquakes, and illness due to chemicals, air pollution from active unconventional well sites is increasing annually.

CO2 Emissions

Using prior years’ data, from 2010 to 2013, we determined that the average CO2 output from unconventional gas wells in 2013 was equal to that of an average coal-fired plant. If growth continued at this rate, the total emissions of all unconventional wells in West Virginia will approximate 10 coal-fired power plants in the year 2030. Coincidentally, this is the same year which the EPA has mandated a 30 percent reduction in CO2 emissions by all current forms of energy production. However, recent reports suggest that the amount of exported gas will quadruple by 2030, meaning that the growth will actually be larger than originally predicted.5 Yet, this number only includes the CO2 produced during extraction. It does not include the CO2 released when the natural gas is burned, or the gas that escapes from leaks in the wells.

Long-Term Impacts

Fires and explosions are just some of the dangers involved in unconventional drilling. While they can be immediately damaging, it is important to look at the long-term impacts that this industry has on the environment. Over time, seepage into drinking water wells and aquifers from underground injection sites will contaminate these potable sources of water. Constant drilling has also led to the occurrence of unnatural earthquakes. CO2 emissions, if left unchecked, could easily eclipse the output from coal-fired power plants – meaning that modern natural gas drilling isn’t necessarily the “clean alternative” as it has been advertised.

References

  1. Willis, Jim ed. (2014). Statoil Frack Trucks Catch Fire in Monroe County, OH. Marcellus Drilling News.
  2. Forbes. (2014). Statoil.
  3. Woods, Jim. (2014). Fish Kill in Eastern Ohio Might be Linked to Fire at Fracking Well. The Columbus Dispatch.
  4. Ibid.
  5. Cushman, John H., Jr. (2014). US Natural Gas Exports No Better for Climate than China’s Coal, Experts Say.

Well Worker Safety and Statistics

By Samantha Malone, MPH, CPH – Manager of Science and Communications, FracTracker Alliance

The population most at risk from accidents and incidents near unconventional drilling operations are the drillers and contractors within the industry. While that statement may seem quite obvious, let’s explore some of the numbers behind how often these workers are in harm’s way and why.

O&G Risks

Oil and Gas Worker Fatalities over Time

Fig. 1. Number of oil and gas worker fatalities over time
Data Source: U.S. Bureau of Labor Statistics, U.S. Department of Labor, 2014

Drilling operations, whether conventional or unconventional (aka fracking), run 24 hours a day, 7 days a week. Workers may be on site for several hours or even days at a time. Simply the amount of time spent on the job inherently increases one’s chances of health and safety concerns. Working in the extraction field is traditionally risky business. In 2012, mining, quarrying, and oil and gas extraction jobs experienced an overall 15.9 deaths for every 100,000 workers, the second highest rate among American businesses. (Only Agriculture, forestry, fishing and hunting jobs had a higher rate.)

According to the Quarterly Census of Employment and Wages of the U.S. Bureau of Labor Statistics, the oil and gas industry employed 188,003 workers in 2012 in the U.S., a jump from 120,328 in 2003. Preliminary data indicate that the upward employment trend continued in 2013. However, between 2003 and 2012, a total of 1,077 oil and gas extraction workers were killed on the job (Fig. 1).

Causes of Injuries and Fatalities in Oil and Gas Field

Reasons for O&G Fatalities 2003-12. Aggregated from Table 1.

Fig. 2. Reasons for O&G Fatalities 2003-12. Aggregated from Table 1.

Like many industrial operations, here are some of the reasons why oil and gas workers may be hurt or killed according to OSHA:

  • Vehicle Accidents
  • Struck-By/ Caught-In/ Caught-Between Equipment
  • Explosions and Fires
  • Falls
  • Confined Spaces
  • Chemical Exposures

If you drill down to the raw fatality-cause numbers, you can see that the fatal worksite hazards vary over time and job type1 (Table 1, bottom). Supporting jobs to the O&G sector are at higher risk of fatal injuries than those within the O&G extraction job category2. The chart to the right shows aggregate data for years 2003-12. Records indicate that the primary risk of death originated from transportation incidents, followed by situations where someone came into contact with physical equipment (Fig. 2).

Silica Research

Silica-Exposed Workers

Fig. 3. Number of total silica-exposed workers and those exposed above PEL – compared across industries
Source: OSHA Directorate of Standards and Guidance

A recent NIOSH study by Esswein et al. regarding workplace safety for oil and gas workers was that the methods being employed to protect workers against respirable crystalline silica3 were not adequate. This form of silica can be found in the sand used for hydraulic fracturing operations and presents health concerns such as silicosis if inhaled over time. According to Esswein’s research, workers were being exposed to levels above the permissible exposure limit (PEL) of ~0.1 mg/m3 for pure quartz silica because of insufficient respirator use and inadequate technology controls on site. It is unclear at this time how far the dust may migrate from the well pad or sand mining site, a concern for nearby residents of the sand mines, distribution methods, and well pads. (Check out our photos of a recent frac sand mine tour.) The oil and gas industry is not the only employer that must protect people from this airborne workplace hazard. Several other classes of jobs result in exposure to silica dust above the PEL (Fig. 3).

References and Additional Resources

1. What do the job categories in the table below mean?

For the Bureau of Labor Statistics, it is important for jobs to be classified into groups to allow for better reporting/tracking. The jobs and associated numbers are assigned according to the North American Industry Classification System (NAICS).

(NAICS 21111) Oil and Gas Extraction comprises establishments primarily engaged in operating and/or developing oil and gas field properties and establishments primarily engaged in recovering liquid hydrocarbons from oil and gas field gases. Such activities may include exploration for crude petroleum and natural gas; drilling, completing, and equipping wells; operation of separators, emulsion breakers, desilting equipment, and field gathering lines for crude petroleum and natural gas; and all other activities in the preparation of oil and gas up to the point of shipment from the producing property. This industry includes the production of crude petroleum, the mining and extraction of oil from oil shale and oil sands, the production of natural gas, sulfur recovery from natural gas, and the recovery of hydrocarbon liquids from oil and gas field gases. Establishments in this industry operate oil and gas wells on their own account or for others on a contract or fee basis. Learn more

(NAICS 213111) Drilling Oil and Gas Wells comprises establishments primarily engaged in drilling oil and gas wells for others on a contract or fee basis. This industry includes contractors that specialize in spudding in, drilling in, redrilling, and directional drilling. Learn more

(NAICS 213112) Support Activities for Oil and Gas Operations comprises establishments primarily engaged in performing support activities on a contract or fee basis for oil and gas operations (except site preparation and related construction activities). Services included are exploration (except geophysical surveying and mapping); excavating slush pits and cellars, well surveying; running, cutting, and pulling casings, tubes, and rods; cementing wells, shooting wells; perforating well casings; acidizing and chemically treating wells; and cleaning out, bailing, and swabbing wells. Learn more

2. Fifteen percent of all fatal work injuries in 2012 involved contractors. Source

3. What is respirable crystalline silica?

Respirable crystalline silica – very small particles at least 100 times smaller than ordinary sand you might encounter on beaches and playgrounds – is created during work operations involving stone, rock, concrete, brick, block, mortar, and industrial sand. Exposures to respirable crystalline silica can occur when cutting, sawing, grinding, drilling, and crushing these materials. These exposures are common in brick, concrete, and pottery manufacturing operations, as well as during operations using industrial sand products, such as in foundries, sand blasting, and hydraulic fracturing (fracking) operations in the oil and gas industry.

4. OSHA Fact Sheet: OSHA’s Proposed Crystalline Silica Rule: General Industry and Maritime. Learn more

Employee health and safety are protected under the following OSHA regulations. These standards require employers to make sure that the workplace is in due order:

Table 1. 2003-2012 U.S. fatalities in oil & gas industries by year, job category, & event/exposure
Year Oil and Gas (O&G) Industriesa Total Fatal Injuries (number)b Event or Exposurec
Violence / injuries by persons / animalsd Transportatione Fires & Explosions Falls, Slips, Trips Exposure to Harmful Substances or Environments Contact w/Objects & Equipment
2012
O&G Extraction 26 0 8 6 5 3 4
Drilling O&G Wells 39 0 10 6 8 3 10
Support Activities 77 0 46 11 5 3 10
Yearly Totals 142 0 64 23 18 9 24
2011
O&G Extraction 13 0 7 0 0 0 3
Drilling O&G Wells 41 0 15 5 4 5 12
Support Activities 58 3 29 7 4 4 11
Yearly Totals 112 3 51 12 8 9 26
2010
O&G Extraction 12 0 5 3 0 3 0
Drilling O&G Wells 47 0 8 14 7 6 12
Support Activities 48 3 28 8 0 0 8
Yearly Totals 107 3 41 25 7 9 20
2009
O&G Extraction 12 0 6 0 0 0 3
Drilling O&G Wells 29 0 9 0 0 4 13
Support Activities 27 0 12 5 0 4 5
Yearly Totals 68 0 27 5 0 8 21
2008
O&G Extraction 21 0 7 4 0 0 5
Drilling O&G Wells 30 0 6 3 4 4 13
Support Activities 69 0 36 11 4 6 12
Yearly Totals 120 0 49 18 8 10 30
2007
O&G Extraction 15 0 5 0 0 0 5
Drilling O&G Wells 42 0 12 0 4 8 16
Support Activities 65 0 33 6 0 5 19
Yearly Totals 122 0 50 6 4 13 40
2006
O&G Extraction 22 0 6 7 0 3 4
Drilling O&G Wells 36 0 11 0 5 4 14
Support Activities 67 0 2 12 0 5 21
Yearly Totals 125 0 19 19 5 12 39
2005
O&G Extraction 17 0 4 5 0 0 4
Drilling O&G Wells 34 0 9 0 7 4 10
Support Activities 47 0 21 5 0 5 13
Yearly Totals 98 0 34 10 7 9 27
2004
O&G Extraction 29 0 17 0 0 0 8
Drilling O&G Wells 30 0 6 0 6 3 11
Support Activities 39 0 22 5 0 0 10
Yearly Totals 98 0 45 5 6 3 29
2003
O&G Extraction 17 0 9 4 0 0 3
Drilling O&G Wells 26 0 5 5 0 0 13
Support Activities 42 0 17 10 0 3 10
Yearly Totals 85 0 31 19 0 3 26
2003-12 TOTAL FATALITIES 1077 6 411 142 63 85 282
a Oil and gas extraction industries include oil and gas extraction (NAICS 21111), drilling oil and gas wells (NAICS 213111), and support activities for oil and gas operations (NAICS 213112).
b Data in event or exposure categories do not always add up to total fatalities due to data gaps.
c Based on the BLS Occupational Injury and Illness Classification System (OIICS) 2.01 implemented for 2011 data forward
d Includes violence by persons, self-inflicted injury, and attacks by animals
e Includes highway, non-highway, air, water, rail fatal occupational injuries, and fatal occupational injuries resulting from being struck by a vehicle.

North American Pipeline Proposal Map

By Ted Auch, PhD – OH Program Coordinator, FracTracker Alliance

With all the focus on the existing TransCanada Keystone XL pipeline – as well as the primary expansion proposal recently rejected by Lancaster County, NB Judge Stephanie Stacy and more recently the Canadian National Energy Board’s approval of Enbridge’s Line 9 pipeline – we thought it would be good to generate a map that displays related proposals in the US and Canada.

North American Proposed Pipelines and Current Pipelines


To view the fullscreen version of this map along with a legend and more details, click on the arrows in the upper right hand corner of the map.

The map was last updated in October 2014.

Pipeline Incidents

The frequency and intensity of proposals and/or expansions of existing pipelines has increased in recent years to accompany the expansion of the shale gas boom in the Great Plains, Midwest, and the Athabasca Tar Sands in Alberta. This expansion of existing pipeline infrastructure and increased transport volume pressures has resulted in significant leakages in places like Marshall, MI along the Kalamazoo River and Mayflower, AR. Additionally, the demand for pipelines is rapidly outstripping supply – as can be seen from recent political pressure and headline-grabbing rail explosions in Lac-Mégantic, QC, Casselton, ND, Demopolis, AL, and Philadelphia.1 According to rail transport consultant Anthony Hatch, “Quebec shocked the industry…the consequences of any accident are rising.” This sentiment is ubiquitous in the US and north of the border, especially in Quebec where the sites, sounds, and casualties of Lac-Mégantic will not soon be forgotten.

Improving Safety Through Transparency

It is imperative that we begin to make pipeline data available to all manner of parties ex ante for planning purposes. The only source of pipeline data historically has been the EIA’s Pipeline Network. However, the last significant update to this data was 7/28/2011 – meaning much of the recent activity has been undocumented and/or mapped in any meaningful way. The EIA (and others) claims national security is a primary reason for the lack of data updates, but it could be argued that citizens’ right-to-know with respect to pending proposals outweighs such concerns – at least at the county or community level. There is no doubt that pipelines are magnets for attention, stretching from the nefarious to the curious. Our interest lies in filling a crucial and much requested data gap.

Metadata

Pipelines in the map above range from the larger Keystone and Bluegrass across PA, OH, and KY to smaller ones like the Rex Energy Seneca Extension in Southeast Ohio or the Addison Natural Gas Project in Vermont. In total the pipeline proposals presented herein are equivalent to 46% of EIA’s 34,133 pipeline segment inventory (Table 1).

Table 1. Pipeline segments (#), min/max length, total length, and mean length (miles).

Section

#

Min

Max

Mean

Sum

Bakken

34

18

560

140

4,774

MW East-West

68

5

1,056

300

20,398

Midwest to OK/TX

13

13

1,346

307

3,997

Great Lakes

5

32

1,515

707

3,535

TransCanada

3

612

2,626

1,341

4,021

Liquids Ventures

2

433

590

512

1,023

Alliance et al

3

439

584

527

1,580

Rocky Express

2

247

2,124

1,186

2,371

Overland Pass

6

66

1,685

639

3,839

TX Eastern

15

53

1,755

397

5,958

Keystone Laterals

4

32

917

505

2,020

Gulf Stream

2

541

621

581

1,162

Arbuckle ECHO

25

27

668

217

5,427

Sterling

9

42

793

313

2,817

West TX Gateway

13

1

759

142

1,852

SXL in PA and NY

15

48

461

191

2,864

New England

70

2

855

65

4,581

Spectra BC

9

11

699

302

2,714

Alliance et al

4

69

4,358

2,186

4,358

MarkWest

63

2

113

19

1,196

Mackenzie

46

3

2,551

190

8,745

Total

411

128

1,268

512

89,232

This is equivalent to 46% of the current hydrocarbon pipeline inventory in the US across the EIA’s inventory of 34,133 pipeline segments with a total length of 195,990 miles

The map depicts all of the following (Note: Updated quarterly or when notified of proposals by concerned citizens):

  1. All known North American pipeline proposals
  2. Those pipelines that have yet to be documented by the EIA’s Natural Gas Pipeline Network mapping team
  3. EIA documented pipelines more accurately mapped to the county level (i.e., select northeastern pipelines)
  4. The current Keystone XL pipeline and the Keystone XL expansion proposal rectified to the county level in Nebraska, South Dakota, Oklahoma, and Texas

We generated this map by importing JPEGs into ArcMAP 10.2, we then “Fit To Display”. Once this was accomplished we anchored the image (i.e., georeferenced) in place using a minimum of 10 control points (Note: All Root Mean Square (RMS) error reports are available upon request) and as many as 30-40. When JPEGs were overly distorted we then converted or sought out Portable Network Graphic (PNG) imagery to facilitate more accurate anchoring of imagery.

We will be updating this map periodically, and it should be noted that all layers are a priori aggregations of regional pipelines across the 4 categories above.

Imagery sources:

  1. Northeast – Long Island Sound, Montreal to Portland, Westchester, Spectra Energy Northeast, Maritime Northeast-Algonquin-Texas Eastern, Delaware River Watershed, Northeastern accuracy of existing EIA data, New England Kinder Morgan, Spectra Energy-Tennessee Gas Pipeline Company (TGP)-Portland Natural Gas Transmission System (PNGTS)
  2. Duluth to The Dakotas, NYMarc Pipeline, Mariner East, Millenium Pipeline Company, WBI Energy’s Bakken,
  3. British Columbia – Enbridge, Spectra/BG, Coastal, Tanker Route
  4. Midwest – ATEX and Bluegrass, BlueGrass, BlueGrass Pipeline,
  5. TransCanada/New England – Portland, Financial Post,
  6. Alaska Pipelines Historically
  7. Rail projects and primary transport
  8. Keystone Tar Sands – Canada (website no longer active), United States, Texas-Oklahoma
  9. Gulf Coast – Florida
  10. MarkWest Houston, Liberty, Liberty, Houston and Majorsville,
  11. Texas Oklahoma – Granite Wash Extension,
  12. Ohio – Spectra Energy, Enterprise Products, Kinder Morgan, Buckeye-Kinder Morgan-El Paso, Chesapeake Energy and AEP
  13. The Rockies Express Pipeline (REX)

Reference

1. Krauss, C, & Mouawad, J. (2014, January 25). Accidents Surge as Oil Industry Takes the Train, The New York Times.

 

Oil Drilling’s Impact on ND Communities

By Thomas DiPaolo, 2013 GIS Intern, FracTracker Alliance

ND Shale Viewer

ND Shale Viewer

Out of North Dakota’s 53 counties, 19 are responsible for producing the oil and natural gas that has brought the state so much prosperity and attention. It’s the latest get-rich-quick scheme, and one that works better than that name would suggest: drive to North Dakota, work in the oil fields for six months, and go home with enough money to find something more permanent. This means that some of the quiet towns overlying the Bakken formation are exploding in size, and many of their new residents lack any connection to these communities when they’re off duty. In the past, similar population booms have been tied to a corresponding increase in crime rates and drug usage, and FracTracker Alliance has examined the available data to find out how much life has changed in North Dakota since the oil started to flow.

Housing Availability

There’s a reason why the you have to drive to North Dakota if you want to stay in the black, and it helps if you’ve got a comfortable car.

Perhaps the biggest problem here, perhaps a cause of others, is that there is simply not enough housing for everyone who wants to work in North Dakota. Trailer parks pack every available inch of space for families from out of state prepared to settle in, becoming themselves towns in miniature, and one of the benefits to consider when working for one oil drilling company over another is to find out which ones are constructing dedicated worker housing and amenities. Familiarity doesn’t fail to breed contempt; demand for living space is so high, in fact, that families who have lived in these towns their whole lives are being forced out as rent prices rise without end. Meanwhile, many have taken to simply sleeping in their cars, and tensions have grown as stores forbid them from parking overnight in their lots.

Crime

With the number of people moving into the state to work in the oil fields, or in industries that support them, North Dakota’s population reached 699,628 in 2012, a jump from the 642,200 people of 2000. More people, of course, means greater effort required to keep the peace – The number of law enforcement officers accordingly jumped from 967 in 2000 to 1,253 in 2012. At first glance, one might think that did the job, since the crime rate fell from 2,203 index crimes1 reported per 100,000 people to 2,122 per 100,000 people, and the number of arrests per officer stayed constant (3.1 in 2000, 3.0 in 2012). That conclusion doesn’t hold up well when you look at how crime has fluctuated within the oil-producing counties.2 The population there has risen to 183,940 people, from just 167,515 people in 2000, and it currently employs 379 law enforcement officers, up from 250 officers. In 2000 the crime rate was already in excess of the state average at 1,582 index crimes reported per 100,000 people and 8.3 arrests per law enforcement officer. By 2012, those figures reached 1,629 crimes per 100,000 people and 12.8 arrests per officer. With only a quarter of the state’s population, the crime rate is three-quarters of the state average. This upswell applies especially to violent crimes. Violent crime reports, numbered at 558 statewide in 2000, nearly tripled to 1,445 in 2012; in the oil counties, they more than tripled from 103 to 363 crimes reported. That number carries through in the crime rate figures; statewide, 206.5 violent crimes occurred per 100,000 people in 2012, while only 86.9 crimes were reported per 100,000 people in 2000; in the oil counties, 197.3 violent crimes were reported per 100,000 people in 2012, compared to only 61.5 violent crimes per 100,000 people in 2000. See Table 1 for a comparison of total and violent crimes between the year 2000 and the year 2012.

Table 1. Crime rates per 100,000 people in North Dakota (2000 vs. 2012)

Total Index Crimes Violent Crimes
Statewide Oil Counties Statewide Oil Counties
2000 2,203 1,582 86.9 61.5
2012 2,122 1,629 206.5 197.3

Where the line blurs is in addressing property crime. Until 2009, there had been a steady decline in the rate of property crime. Since then, however, it has been increasing every year, even if the 2012 figures are still beneath those of 2000. Statewide, the number of property crimes hovered at 13,592 reported crimes in 2000 and 13,402 in 2012, while in the oil counties they rose slightly from 2,547 property crimes in 2000 to 2,634 crimes in 2012. At the same time, the property crime rates fell both statewide (2,116 crimes per 100,000 people to 1,916 per 100,000 people) and in the oil counties (1,529 crimes per 100,000 people to 1,486 per 1000,000 people).

Prostitution

When you have that many single young men together, as so many of the oil field workers are, a market inevitably springs up for very particular crimes. Prostitution stings consume a greater quantity of police time than ever before, with some ND counties reporting their first prostitution arrests ever. In many cases, the suspects in these cases demonstrate a similar attitude to the oil workers they court: stay for a brief period (typically days rather than months), make enough money to support themselves, and keep going out of town. Officers often say that these cases are risky, as they require enough evidence to prove the intent of both parties to exchange money for sex. Without an undercover officer to carry out a sting, many cases could be accused of discrimination, especially in cases where race may be an issue. In other situations, sting operations have provided evidence of drug activity in addition to prostitution.

Drug Use

Juvenile Alcohol Use

In addition to the oil boom, North Dakota has the uncomfortable claim of being one of the nation’s leaders when it comes to binge drinking. It’s notable then to see that, while juvenile3 alcohol use has fallen drastically across the board, juveniles are developing more permissive attitudes towards alcohol use. Between 2000 and 2011, the number of juveniles who reported using alcohol within the previous month fell from 18,000 to 7,000, and it fell from 11,000 to 4,000 juveniles in regards to binge drinking4 on a weekly basis. At the same time, the number of juveniles showing signs of alcohol dependence or abuse fell from 6,000 to 2,000, and those described as needing but not receiving treatment for alcohol abuse fell from 5,000 to 2,000. Yet only 17,000 juveniles reported perceiving great risk from said binge drinking in 2011, where 22,000 had reported perceiving great risk in 2000. Why are more juveniles rejecting personal alcohol use while becoming less concerned with others’ usage?

Adult Drug & Alcohol Use

Whatever the reason, adult alcohol usage has demonstrated the opposite trend: more people are drinking but fewer enjoy it. Between 2000 and 2011, the number of adults using alcohol monthly rose from 286,000 to 320,000, and those binge drinking weekly rose from 144,000 to 165,000. The number of adults perceiving great risk from weekly binge drinking also rose from 173,000 to 183,000, but the number with signs of alcohol dependence or abuse rose from 33,000 to 47,000. Interestingly, the number of adults described as needing but not receiving treatment for alcohol use has barely changed in this time; 46,000 adults were characterized this way in 2000, as opposed to 45,000 of them in 2011.

Smoking and Marijuana Use

The one trend shared between both juveniles and adults is a steady increase in the number of people expressing permissive attitudes towards the use of marijuana. In 2000, 4,000 juveniles and 13,000 adults reported using marijuana within the previous month; by 2011, only 2,000 juveniles reported using marijuana within the previous month, but the number of adults doing so had jumped to 23,000. At that time, only 17,000 juveniles and 171,000 adults reported perceiving great risk from the use of marijuana on a monthly basis, down from 25,000 and 213,000 respectively in 2000. These figures come at a time when other forms of smoking are becoming less popular across the U.S. In 2000 in ND, 16,000 juveniles were using tobacco products on a monthly basis, and 13,000 were using cigarettes specifically; those numbers had fallen to 6,000 and 5,000 juveniles respectively by 2000. Even among adults there were small declines over this time period: 154,000 adults were using tobacco monthly in 2011 as opposed to 161,000 in 2000, and 121,000 adults as opposed to 128,000 were using cigarettes. And while the number of juveniles perceiving great risk from pack-a-day smoking fell from 38,000 to 32,000 between 2000 and 2011, while 346,000 adults perceived great risk from it in 2011, as opposed to 315,000 in 2000.


Footnotes

  1. According to the Crime and Homicide Reports of the North Dakota Attorney General’s office, index crimes are reported to the National Uniform Crime Reporting program managed by the Federal Bureau of Investigation in order to broadly describe the level of criminal activity around the country. They are divided into two categories, violent and property-related. The violent index crimes tracked by North Dakota are murder and non-negligent manslaughter, forcible rape, robbery, and aggravated assault. The property index crimes tracked by the state are burglary, larceny and theft, and motor vehicle theft.
  2. The North Dakota Association of Oil and Gas Producing Counties lists the following counties as its members: Adams, Billings, Bottineau, Bowman, Burke, Divide, Dunn, Golden Valley, Hettinger, McHenry, McKenzie, McLean, Mercer, Mountrail, Renville, Slope, Stark, Ward, and Williams.
  3. The National Surveys on Drug Use and Health define a “juvenile” as any person between the ages of 12 and 17 years, and an adult as any person aged 18 years or older.
  4. The National Surveys on Drug Use and Health define “binge drinking” as consuming five or more alcoholic beverages in one sitting.

Letter of Inquiry from a Public Health Professional

By Mary Ellen Cassidy, Community Outreach Coordinator

I recently came across a letter by Dr. Alan Ducatman, MS, MD, Professor of Public Health and Medicine at WVU in Donald Strimbeck’s updates.  It stuck me by its sincerity, logical tone, and reasonableness.

Drilling Spill SampleDr. Ducatman’s letter begins by commenting on the gas industry’s response to a surface spill in Garfield County.  The industry’s response to this spill, an Energy In Depth Blog (12/20/13), includes the following statement, “We all know spills are bad and can cause problems, so what exactly did they expect to find?”

Dr. Ducatman’s letter looks past the rather snide tone of the response to commend the industry for its honest acknowledgement that spills do occur and bad things can and do happen.  Dr. Ducatman notes that, although the response “lacks consistency with past and present behavior in public forums,” he hopes to see it become a “consistent and reasonable position” in the future.

The letter then calls on industry to be more scientific and open in their communications regarding other issues such as quality assurance, worker safety, well casing failures, leaks, water testing impediments, public protection practices, and reporting, while reminding the industry of the human and economic costs of externalities and the “terrible weight” of these collateral impacts on communities.

It occurred to me, upon reading this letter that more of us need to ask questions of the industry and take action to protect and support our impacted communities. Not only do we need more professional researchers like Dr. Ducatman asking questions, we also need many more people on the ground _DSC4465documenting what is happening around them to hold the industry accountable.

FracTracker Alliance aims to empower and equip volunteers to track and document unconventional gas and oil activities. Options for engagement include:

  • Trail Logbook – addressing trail-based observations about physical and experiential conflicts related to oil and gas development
  • The US Map of Suspected Well Water Impacts – aggregating cases of home drinking water problems that may be associated with oil and gas exploration
  • The new FracTracker mobile app (for iPhones) – making it easy  to take photos and record information on various oil and gas impacts in your neighborhood or afar. We are currently in the pilot testing phase of this app, which can also be used to contribute data to the other two programs described above.

These programs depend on crowdsourced information from you and others to grow a national database on the extensive footprint of the industry.  Check out our website and projects to see where you fit.

In addition, we always welcome your ideas on how our mapping and other services can help your community’s efforts to protect its health and natural resources.

Contact me to learn more about how you can become a part of the FracTracker team, and a special thank you to Dr. Alan Ducatman for his letter reenergizing this important conversation.

If you are one of those people ready to work together in a concerted effort towards a more positive energy future, FracTracker needs you.


Mary Ellen Cassidy, Community Outreach Coordinator
Cassidy@FracTracker.org
304-312-2063

Hydrocarbon Industrial Complex Map In Detail

Below is a brand new map from our team that contains multiple data layers that speak to the myriad players and facilities involved in the North American hydrocarbon network – from upstream processing facilities to transporters and export terminals. This map helps us to demonstrate the complexity of the hydrocarbon industry, because we often assume that hydraulic fracturing or related extractive techniques are local issues. However, there is actually a tremendous – and growing – interconnectivity between production, transport, processing, usage, storage, and export.


To see a fullscreen version of this map, along with a legend and description, click on the arrows in the upper right hand corner of the map.

Data Descriptions

EIA Sources: Peak Shavers, Underground Natural Gas Storage, Compressor Station, Natural Gas HUBs, and Pipeline Data

Peak Shavers are:

…used for storing surplus natural gas that is to be used to meet the requirements of peak consumption later during winter or summer. Each peak-shaving facility has a regasification unit attached but may or may not have a liquefaction unit…[they] depend upon tank trucks to bring LNG from other nearby sources to them. Of the approximate 113 active LNG facilities in the United States, 57 are peak-shaving facilities. The other LNG facilities include marine terminals, storage facilities, and operations involved in niche markets such as LNG vehicular fuel. Learn more

The data included in this map include 109 Peak Shavers vs. the aforementioned 57.

  • Regional distribution: 7 Central US, 12 Midwest, 53 Northwest, 24 Southeast, 5 Southwest, 8 Western
  • 106 of which are active and 3 under construction

The Underground Natural Gas Storage Facilities (UNGSF) layer is an EIA-defined collection of 413 facilities1, a definition that includes “pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network.” (For a more detailed description of UNGSF, see the EIA’s description)

Compressor Stations are designed to ensure:

…that the natural gas flowing through any one pipeline remains pressurized, compression of this natural gas is required periodically along the pipe…usually placed at 40 to 100 mile intervals along the pipeline. The natural gas enters the compressor station, where it is compressed by either a turbine, motor, or engine…[they] gain their energy by using up a small proportion of the natural gas that they compress.

For a more detailed discussion of the importance and design of compressor stations, refer to NaturalGas.org’s The Transportation of Natural Gas.

  • This layer includes: 1,756 compressor stations with the following regional distribution: 207 Canadian, 344 Central US, 14 Gulf Coast, 169 Midwest, 249 Northeast, 191 Southeast, 450 Southwest, and 132 Western stations
  • The mean and total horsepower across 1,417 of these facilities is 10,411 and 18,282,484, respectively, with average and total throughput of 660 and 1,159 Billion Cubic Feet (BCF)2.

Natural Gas HUBs are broken down by operator type with 26 “Market Center”, 31 “Market Hub”, 3 “Production Hub”, and 3 “Storage Hub” facilities included.

  • Regional distribution: 9 in Canada, 7 across the Central US, 4 in the Midwest, 8 in the Northeast, 4 in the Southeast, 24 in the Southwest, and 7 in the Western US.
  • All facilities were activated between 1994 and 1998
  • Status: 5 Canceled, 13 Inactive, 36 Operational, and 9 Proposed HUBs

Pipeline segments are parsed by type: a) 69 sections totaling 1,627 miles described as “Gathering” at an average diameter of 17 inches, b) 18,905 segments totaling 127,049 miles as “Interstate” with an average diameter of 15 inches, and  c) 15,152 “Intrastate” segments totaling 66,939 miles and an average diameter of 2.8 inches.

Select states statistics:

  1. 7,450 segments were located in Texas with a total length of 44,600 miles,
  2. 1,313 segments were located in California with a total length of 6,370 miles,
  3. 2,738 segments in Louisiana with a  total length of 15,330,
  4. New York and New Jersey are home to a combined 2,315 pipeline segments with a total length of 4,015 miles,
  5. 859 segments and 5,935 miles in Ohio,
  6. Great Lakes bordering states contain 6,841 pipeline segments totaling 33,457 miles,
  7. Pacific Northwest states including Washington, Oregon, Idaho, and Montana contain 1,765 segments totaling 6,121 miles,
  8. Gulf Coast states sans Texas contain 3,886 pipeline segments totaling 25,775 miles.

The above datasets were compiled by Ted Auch and Daniel Berghoff of the FracTracker Alliance or sourced from the US Energy Information Administration via their Natural Gas data portal and their analysts Tu Tran and Robert King.

US River and Coastal Export/Import Ports

US inland (i.e., Mississippi River) and coastal ports are the singular ways in which all manner of hydrocarbons are transported to downstream processing facilities and subsequently used domestically or exported. The data contained herein include 12 Mississippi, 7 Ohio and Tennessee River, and 11 Columbia river ports along with 16 Great Lakes/St. Lawrence river ports (Table 1).

Table 1. Number of inland and coastal US and territories ports as of December 2013.

State

Number of Ports

State

Number of Ports

AK

40

MO

2

AL

7

MS

3

AR

2

NC

2

CA

9

NJ

2

CT

3

NY

6

DE, VA, MD, & DC

6

OH

2

FL

17

OK

2

GA

2

OR

13

HI

7

PA

2

IA

1

PR

1

ID

1

RI

1

IL

4

SC

1

KY

2

TN

4

LA

13

TX

11

MA

3

VI

1

ME

2

WA

6

MI

6

WI

4

MN

4

WV

2

US Coal Plants & Emissions

We were pointed to this data by Source Watch’s “Coal Swarm” project’s Director Ted Nace and researcher Joshua Frank. Learn more. The layer includes coal used, emissions of carbon dioxide (CO2), sulfur dioxide (SO2), methane (CH4), oxides of nitrogen (NOX), and mercury (Hg). Also included are the number of deaths across a variety of categories and emergency room visits attributed to each coal plant, along with estimates of the valuation of each of these. The raw data are available from the the US EPA’s Emissions & Generation Resource Integrated Database (eGRID) comprehensive data portal with the “Version 1.0” ZIP file containing: “spreadsheet files, state import-export files, Technical Support Document, file structure document, Summary Tables, GHG output emission rates, the EUEC2010 paper, and graphical representations of eGRID subregion and NERC region maps. Data in this file encompasses years 2009, 2007, 2005 and 2004.” The data were most recently updated on May 10, 2012 in order to include 2009 data.

Transload Facilities Directory

Directory Description:

Rail-to-truck transload facilities where cargo is transferred between tank trucks and water or rail transportation…These bulk material handling companies also provide information such as products handled, services and equipment available, and methods for dry bulk product transfer…These intermodal locations are owned or operated by trucking companies, railroads, or independent bulk terminal operators. Unless the prohibition is stated, these businesses have indicated they allow outside carriers to load products at their facilities. Learn more

Services Key:

  • Products handled: a. Acids, b. Chemicals (liquid), c. Chemicals (dry), d. Asphalt, e. Foods (liquid), f. Foods (dry), g. Plastics (dry), h. Petroleum products
  • Services/equipment available: a. Air compressor, b. Scale, c. Blending meters, d. Sampling service, e. Hot water heating, f. Steam heating, g. Tank trailer cleaning, h. Liquid storage tanks, i. Liquid pumps
  • Dry bulk product transfer by: a. Vacuum trailer, b. Auger, c. Blower, d. Gravity (trestle), e. Portable vacuum/air conveyor, f. Bulk conveyor

Intermodal Tank Containers

Those facilities “that have actual storage depot operations. The operators specialize in both the handling and storage of ISO containers.” Learn more

Intermodal tanks are:

… intermodal container[s] for the transport of liquids, gases and powders as bulk cargo…built to the [International Organization for Standardization] Standard, making it suitable for different modes of transportation. Both hazardous and non-hazardous products can be transported in tank containers. A tank container is a vessel of stainless steel surrounded by an insulation and protective layer of usually Polyurethane and aluminum. The vessel is in the middle of a steel frame. The frame is made according to ISO standards and is 19.8556 feet (6.05 meters) long, 7.874 feet (2.40 meters) wide and 7.874 feet (2.40 meters) or 8.374 feet (2.55 meters) high. The contents of the tank ranges from 27,000 to 40,000 liters (5,900 to 8,800 imp gal; 7,100 to 11,000 U.S. gal). There are both smaller and larger tank containers, which usually have a size different from the ISO standard sizes. The trade organization @TCO estimates that at the end of 2012 the global fleet of tank containers is between 340,000 and 380,000. (Wikipedia definition)

Services Key: a. Storage, b. Cleaning, c. Container shuttle service, d. Container drayage, e. Steam/electric heat, f. Rail siding, g. Repair/refurbishing, h. American Bureau of Shipping (ABS) certification, i. American Society of Mechanical Engineers (ASME) certification, j. ISO 9000 certification, k. 2.5- and 5-year ABS testing, l. Reefer tank repairs, m. Parts supply

Abbreviations: SC=straddle carrier, TLSL=top-lifting side-loader, D/D=drop-deck

MarkWest Facilities

Facility locational data gathered from the company’s operations website.

Cargo Tank Repair Directory

“Bulk Transporter’s Cargo Tank Trailer Repair Directory…the most comprehensive listing of repair facilities that service tank trucks and tank trailers. Additionally, many of these facilities offer custom fabrication. Most listings include services offered, but tank truck operators are encouraged to contact the facilities directly for more information…The first six items listed on the “Services Key” are the DOT tests and inspections required by federal law. Companies listing “R” or “U” stamps were asked to provide Bulk Transporter with a record of their accreditation. The federal CT registration number also was requested for the tank repair shops in the directory.” Learn more

Repair Services Key:

1. External visual inspection, 2. Internal visual inspection, 3. Lining inspection, 4. Leakage test, 5. Pressure retesting, 6. Thickness testing, 7. MC330/331 retesting, 8. Vapor recovery testing, 9. Bottom-loading conversion, 10. Major barrel repair, 11. Tank passivation, 12. Sandblasting/painting, 13. Tank changeouts, 14. Tank degassing, 15. Tank cleaning (for repair only), 16. Custom fabrication, 17. Purchase wrecked trailers, 18. Pick-up & delivery, 19. Lining repair, 20. ASME “U” stamp, 21. National Board “R” stamp

Soon To Be Added Data:

Tank Cleaning Directory

The Commercial Tank Cleaning Directory…information…was supplied by the operators of commercial and carrier-owned tank wash facilities that provide cargo tank interior cleaning. Directory listings may include product limitations such as “food grade only” or “no hazmat.” Learn more


Footnotes

[1] 407 active and 6 inactive facilities; Region –

  1. 259 “Consuming East” primarily within depleted reservoirs providing supplemental backup and/or peak period supply,
  2. 49 “Consuming West” primarily for domestic US and Alberta gas to flow at constant rates, and
  3. 105 “Producing” facilities which are primarily responsible for hydrocarbon basin export connectivity, transmission, and distribution and allow for the storage of currently redundant natural gas supply; Field Type Affiliation – 43 aquifers, 331 depleted fields, and 39 salt domes. Learn more

[2] These total horsepower and throughput figures are up from 13.4 million and 743 BCF in 1996.

OH Shale Viewer

OH National Response Center Data on Shale Gas Viewer

By Ted Auch, PhD – Ohio Program Coordinator, FracTracker Alliance

Thanks to the Freedom of Information Act (FOIA), we as US citizens have real-time access to “all oil, chemical, radiological, biological, and etiological discharges into the environment anywhere in the United States and its territories” data via the National Response Center (NRC). The NRC is an:

initial report taking agency…[that] does not participate in the investigation or incident response. The NRC receives initial reporting information only and notifies Federal and State On-Scene Coordinators for response…Verification of data and incident response is the sole responsibility of Federal/State On-Scene Coordinators.[1]

We decided that NRC incident data would make for a useful layer in our Ohio Shale Gas Viewer. As of September 1, 2013 it is included and will be updated bi-monthly. Thanks go out to SkyTruth’s generous researchers Paul Woods and Craig Winters. We have converted an inventory of Ohio reports provided by SkyTruth into a GIS layer on our map, consisting of 1,191 events, including date and type, back to January 2012.


The layer is not visible until you zoom in twice from the default view on the map above. It appears as the silhouette of a person lying on the ground with Skull and crossbones next to it. View fullscreen>

Currently, the layer includes 28 hydraulic fracturing-related events, 61 “Big [Oil and Chemical] Spills,” and 1,102 additional events – most of which are concentrated in the urban centers of Cleveland, Toledo, Columbus, and Toledo OH.

From a Utica Shale corporation perspective, 21 of the 28 reports are attributed to Chesapeake Operating, Inc. (aka, Chesapeake Energy Corporation (CHK)) or 75% of the hydraulic fracturing (HF) events, while CHK only accounts for 48% of all HF drilled, drilling, or producing wells in OH. Anadarko, Devon, Halcon, and Rex are responsible for the remaining 7 reports. They collectively account for 2.7% of the state’s current inventory of unconventional drilled, drilling, or producing wells.


[1] To contact the NRC for legal purposes, email efoia@uscg.mil. The NRC makes this data available back to 1982, but we decided to focus on the period beginning with the first year of Utica permits here in Ohio to the present (i.e., 2010-2013).

North Dakota Bakken Gas Flares

Gas Flaring and Venting: Data Availability and New Methods for Oversight

By Samir Lakhani, GIS Intern, FracTracker Alliance

In the hazy world of gas flaring and venting, finding worthwhile data often leads one to a dead end. Although the Energy Information Administration (EIA) holds the authority to require active oil/gas companies to disclose this data, they choose not to. EIA will not proceed with such actions because, “…assessing the volume of natural gas vented and flared would add significant reporting burdens to natural gas producers causing them substantial investments.” Additionally, the EIA is not confident that oil/gas producing companies have the capability to accurately estimate their own emissions from venting or flaring activities.

Piece-Meal

Some states do voluntarily submit their estimates, but only 8 of the nation’s 32 oil and gas producing states submit their data. This makes attempts for national estimates incomplete and inaccurate. State officials have repeatedly complained that the EIA has provided them with insufficient guidelines as to how the data should be submitted, and in what format. It appears the only way that concerned parties are able to monitor this practice is with satellite imagery from the sky, to literally watch flaring as it occurs.

Bird’s Eye View

The Bakken Shale Formation has received a considerable amount of attention. We’ve all seen the nighttime satellite images of North Dakota, where a normally quiet portion of the state light up like a bustling city. It is to be understood that not all the lights in this region are gas flares. Much of it is emergency lighting and temporary housing associated with drilling companies.

There are a few obvious issues with satellite surveillance. Firstly, it is difficult to monitor venting emissions from a bird’s eye perspective. Venting is the process by which unsought gas is purposely wafted from drill sites into the atmosphere. Venting is a much more environmentally costly decision compared to the ignited alternative, as pure natural gas is twenty times more potent than CO2 as a greenhouse gas. To monitor venting behavior, from up high, Infrared sensors must be used. Unfortunately, these emissions do not transmit well through the atmosphere. Proper detection must be made much closer to earth’s surface, perhaps from an airplane or on the ground. Secondly, flaring is almost impossible to detect during the day using satellites. One could equate it to attempting to see a flashlight’s beam when the sun is out. Lastly, when the time comes to churn out an estimate on how much gas is really being wasted—the statistics vary wildly.

Using SkyTruth’s satellite image, and GIS data retrieved from North Dakota’s Department of Mineral Resources, it is now possible to pinpoint North Dakota’s most active gas flaring sites. Using this, more accurate estimates are now within reach. North Dakota gas drillers may flare their “associated” gas for up to one year. However, Officials at Mineral Management Service claim that it is not difficult to get an extension, due to economic hardship. There are always instances of gas/oil operators flaring or venting without authorization. In 2003, Shell paid a 49 million dollar settlement over an unnoticed gas flaring and venting operation that lasted several years. The beauty of satellite imagery and GIS detail is the observer’s ability to pinpoint flaring operations and by referencing the leases, evaluate whether or not such practices were authorized.

This map shows flaring activity in the Bakken Formation from January 1 through June 30, 2013. Please click the “Fullscreen” icon in the upper right hand corner to access the full set of map controls.

Regulation and Control

If flaring and venting are costly to the environment and result in a loss of company product (methane), you may ask why these practices are still conducted. Flaring and venting practices are cheaper than building the infrastructure necessary to harness this energy, unfortunately. To effectively collect this resource, a serious piping network is needed. It is as if a solar farm has been built in the desert, but there is no grid to take this power to homes. To lay down piping is an expensive endeavor, and it requires continuous repairs and on-site monitors. Even when North Dakota burns over 30% of their usable product, there is little initiative to invest in long term savings. A second method, called “green completions”, is becoming a more popular choice for oil and gas companies. A green completion is a portable refinery and condensate tank aimed to recover more than half of excess methane produced from drilling. Green completions are the best management practice of today, and the EPA wishes to implement green completion technology nationwide by 2015.

The best way to estimate gas flare and venting emissions is through submissions from gas/oil companies and to analyze the data using GIS applications. Concerned organizations and citizens should not have to rely on satellite services to watch over the towering infernos. There is new research coming out each day on adverse health effects from living in close proximity to a gas flare and vent. It releases a corrosive mixture of chemicals, and returns to the earth as acid rain. Please refer to this publication for a thorough assessment of possible health effects.

This issue is not limited to US borders only; flaring has wreaked havoc in South America, Russia, Africa, and the Middle-East. During the extraction of oil, gas may return to the surface. In many of these areas where oil drilling is prevalent, there are no well-developed gas markets and pipeline infrastructure, which makes venting and flaring a more attractive way to dispose of an unintentionally extracted resource. If the US were to make substantial changes to the way we monitor, regulate, and reduce gas flaring/venting, and accessibility to data, we would set the standard on an international level. Such policy changes include: carbon taxation, streamlining the leasing process (Many oil/gas officials despise the leasing applications for pipelines), installing flaring/venting meters and controls, and tax incentives (to flare and green complete, rather than vent).

All of these changes would tremendously reduce and regulate gas flaring in the US, but without accurate and comprehensive data these proposed policies are meaningless. Data is, and forever will be, the diving board on which policy and change is founded.


Special thanks to Paul Woods and Yolandita Franklin of Skytruth, for using VIIRS and IR technologies to compile the data for the above map.

Negative Health Impacts & Stressors Perceived to Result from Marcellus Shale Activity

Identified by Researchers at the University of Pittsburgh Graduate School of Public Health

By Kyle Ferrar, MPH – DrPH Candidate, Environmental and Occupational Health Department, Graduate School of Public Health, University of Pittsburgh

The potential for negative health impacts to result from unconventional natural gas development activities, such as hydraulic fracturing (deemed “frac’ing”) occurring in the Marcellus Shale basin, is a highly debated and contentious issue.  To resolve this issue public health and medical professionals will need to conduct a large-scale epidemiological study – one that monitors the lives and health of a large sample of people for an extended period of time.  Such a study should test to see if proximity, or closeness to unconventional natural gas development, such as frac’ing, causes negative health impacts.  Such a study has not yet been officially proposed in Pennsylvania, much less funded, but researchers at the University of Pittsburgh’s Center for Healthy Environments and Communities (CHEC) believe such a study will be conducted in the future.

New peer-reviewed research released by the CHEC provides background data for that kind of study.  The research documented 59 unique health impacts, or “symptoms,” and 13 “stressors” perceived to result from Marcellus Shale development.  Over time, symptoms and perceived health impacts increased for the sample population (p<0.05), while stressors resulting from Marcellus Shale activity remained consistent (p=0.60).  The study group was a biased sample population, meaning the participants were not randomly selected.  Rather, the participants were already concerned by or interested in issues associated with this industrial activity.

Using community based participatory research methods, researchers from CHEC, along with researchers from FracTracker while it was still a project at CHEC, engaged community members with in-depth interviews.  Mail surveys have been conducted by other researchers in Colorado and Wyoming, but this is the first research to use an ethnographical, in-person approach.  Furthermore, this is the first peer-reviewed and published research that describes symptoms in those who believe their health has been affected.  The six most reported symptoms are reported in Table 1, with stress being the most commonly reported health effect.

The article contributes several new findings to this field of research, including evidence about what people report as stressors.  Contributions of stress to negative health effects are well documented in the literature, known as allostatic loads.  The six most commonly reported “stressors,” or sources of stress, are reported in Table 2.  Particularly notable is the very high percentage of the group that report issues such as being lied to that presumably would be corrected if the industry became more transparent and responsive.  The article also reports on the longitudinal nature of the perceived health impacts and stressors. Longitudinal refers to the fact that the data were collected over time, not just once. Follow-up interviews conducted 19-22 months after the initial interviews showed that the number of perceived health impacts reported by participants actually increased over time, while the number of stressors reported remained consistent.  This contradicts industry’s argument that the problems are mainly caused by seeing and hearing drilling activity, and that as the intensity of activity diminishes over time so will the symptoms and stressors. While this research does not answer the larger question of whether negative health effects are associated with Marcellus Shale development, it demonstrates a need for future studies to be conducted within these particular communities and supports the more difficult task of embarking on a broader epidemiological study.

Table 1. Most reported symptoms with the percentage of participants reporting said symptom.

Symptoms Session 1 (n=33)
Stress 76%
Rashes 27%
Loss of sleep 27%
General illness 24%
Headaches 24%
Diarrhea 24%
Shortness of breath 21%
Line Table 2. Most reported “stressors” participants associated with Marcellus Shale development, with the percentage of participants reporting said stressor.

Stressor Session 1 (n=33)
Denied or provided false information 79%
Corruption 61%
Concerns/complaints ignored 58%
Being taken advantage of 52%
Financial damages 45%
Noise pollution 45%

 

About the Journal Article

Assessment and longitudinal analysis of health impacts and stressors perceived to result from unconventional shale gas development in the Marcellus Shale region <-- Note: This link is presently not connecting to the article on IngentaConnect.com. We will update the link once the article becomes available again on their site. Authors: Kyle J. Ferrar; Jill Kriesky; Charles L. Christen; Lynne P. Marshall; Samantha L. Malone; Ravi K. Sharma; Drew R. Michanowicz; Bernard D. Goldstein Source: International Journal of Occupational and Environmental Health

PACWA’s List of the Harmed Now Mapped by FracTracker

Jenny Lisak, co-director of the Pennsylvania Alliance for Clean Water and Air, maintains a list of people claiming to be harmed by hydraulic fracturing or related processes, called the List of the Harmed.  This version of the list, last updated on February 23, 2013, has 822 people thought to be negatively impacted by the industry, with symptoms ranging from headaches and rashes to death.


The List of the Harmed is maintained by the Pennsylvania Alliance for Clean Water and Air. For full access to map controls, click the “Fullscreen” icon at the top right corner of the map.

The FracTracker Alliance was not involved in the creation or maintenance of this list, but our intern Stephen Paddock did map the incidents to the best available level of accuracy, whether that was at the municipal, county, or state level. Please do not assume that the locations on the map are any more accurate than the level indicated in the “Accuracy” column.

Popup box containing the data for one of the 878 entries on the List.

Popup box containing the data for one of the 878 entries on the List.  The yellow oval shows that there are multiple boxes stacked on top of each other, and the green oval provides a hyperlink to more information about the incident in question.

Each entry on the List of the Harmed has at least one link to more information about the given incident.  To access those, click on any map icon to bring up the popup box.  Then scroll down to the “Link” section, and click on “More info”.  If there are multiple sources, they will appear under “Link_2” or “Link_3”.

In the picture above, the text “(1 of 11)” in the yellow oval tells us that there are eleven popup boxes stacked on top on one another.  To sort through the records, simply click the arrow button toward the right edge of the yellow oval.