Posts

Population density map of ME2 pipeline (aka Dragonpipe)

Population density maps: Lessons on where NOT to put a pipeline

By George Alexander, Guest Author

Census maps tell the story

FracTracker Alliance recently created a set of maps showing population variation along the route of the Mariner East 2 Pipeline, which I refer to as the “Dragonpipe.” FracTracker’s maps dramatically reveal a route that runs through many centers of dense population, and seems to avoid relatively nearby areas with far lower population density. The maps are based on US Census 2010 block-level data.

The take-away lesson from these maps is this: Sunoco has put the Dragonpipe in a very bad location.

As an example, here is a map of the pipeline route as it passes through Berks, Chester, and Delaware counties in Pennsylvania:

Figure 1. Population density in southeastern Pennsylvania. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Figure 1. Population density in southeastern Pennsylvania. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

The dark brown areas in the map above denote the most densely populated locations, displayed as the number of people per square mile. The lighter the color, the lower the population density. The black line is the pipeline route.

In the upper left-hand part of the map, note that the route passes through the suburbs of Reading, in Berks County. Further south in the same map, notice how it passes directly through population centers in Chester and Delaware counties.

Let’s examine this pattern more closely.

Why was this route chosen in the first place?

For Sunoco’s convenience

In many areas, from a standpoint of impacts on local communities, the pipeline route is actually the worst possible track that Sunoco could have chosen; it puts more people at risk than any other path, given the same starting- and endpoints. Why in the world did they choose this route?

The answer is this: for Sunoco’s corporate convenience. The Dragonpipe, for most of its length, runs side-by-side Mariner East 1 (ME1), an existing 80+ year-old pipeline designed to carry gasoline and heating oil to customers in the central and western parts of Pennsylvania. From this standpoint, the location of the old pipeline makes sense; it had to be sited near populated areas. That’s where the customers for gasoline and heating oil were located back in the 1930s.

However, the flip-side of Sunoco’s corporate convenience may also mean unnecessary risks to tens of thousands of Pennsylvania residents. 

The old pipeline connected the centers of population in the 1930s, areas that are now much more populous when they were nearly ninety years ago. In the southeastern part of Pennsylvania, the character of the area has also changed dramatically. When the original pipeline was built, the landscape along ME1’s route through Delaware and Chester counties was predominantly farmland. Today, that area has changed to densely-settled suburbs, with homes, schools, businesses, hospitals, and shopping centers directly adjacent to the pipeline’s right-of-way.

The Exton area provides a prime example of how this transition to suburbia has set the stage for potential disaster along the pipeline route. The following image shows a detailed view of the population density near Exton. As you can see, the pipeline route sticks to high-density areas (shown in dark brown) the entire way, even though lower-density options (shown in orange and yellow) exist nearby.

Figure 2. Population density in Exton area. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Figure 2. Population density in Exton area. Map courtesy of FracTracker Alliance. Location annotations added by G. Alexander.

Sunoco — like any corporation — has a moral obligation to conduct its business in a safe manner. This includes choosing a safe route for a pipeline that has inherent dangers and risks. However, Sunoco apparently did not choose to do so. Moreover, by law, Sunoco has an obligation to make human safety paramount. In the settlement Sunoco reached last August with Clean Air Council, Delaware Riverkeeper Network, and Mountain Watershed Association, Sunoco agreed to consider alternative routing for the pipeline in this area. Then, despite their promises, Sunoco simply bypassed that part of the agreement. Rather than explore alternatives to the proposed route, Sunoco dismissed the alternatives as “not practicable” because they did not involve the right-of-way that was already in use for Mariner East 1.

Sunoco seemed to have made their sole priority in considering a pipeline route whether the company has an existing pipeline there already. A better route would reduce by hundreds the number of people who could be killed or injured if there were a leak and explosion.

Pipelines leak

Pipelines can and do leak. Mariner East 1, in its short career as a pipeline carrying NGLs, has already leaked several times. It is just good luck that the leaks were stopped before any product ignited. (See most recent report of ME1 and ME2 issues.) The Atex pipeline, a pipeline of similar size and content that runs down to the Gulf Coast, ruptured and exploded near Follansbee, WV, in just its second year of operation. And there’s no reason to believe such an incident would never happen with the Dragonpipe.

Sunoco has an obligation to do what it can to minimize the injuries, death, and destruction caused by an event like the Follansbee explosion. The Follansbee incident occurred in a forested area. The explosion destroyed several acres of trees, but no-one was killed. The result would have been far different if had the explosion been in a densely populated area.

Just as the maps above show how the Philadelphia suburbs and those of Reading are threatened, other FracTracker maps show the threats to suburbs of Pittsburgh and Harrisburg, below. Click to expand.

A call for change

Indeed, across the state, the Dragonpipe route gets dangerously and notably close to population centers. Such a path may be a convenient and financially beneficial option for Sunoco, but it is an unacceptable risk for Pennsylvania’s citizens to bear.


About the Author: George Alexander publishes the Dragonpipe Diary (www.dragonpipediary.com), covering all aspects the Mariner East pipeline project, including technology, risks, legal issues, economics, and the people and groups involved. He recently retired from a career in journalism and marketing.

An earlier version of this essay was published in Mr. Alexander’s blog, Dragonpipe Diary, on June 29, 2018.

 

LPA Pipeline protest - Crosshairs feature

In the Crosshairs

The Origins & Work of Lebanon Pipeline Awareness, Inc. in Lebanon County, PA
by Michael Schroeder, Lebanon Pipeline Awareness, Inc.
LPA Logo

Nestled in a mostly agricultural region blessed with some of the most fertile, non-irrigated farmland in the world, Lebanon County, Pennsylvania sits square in the crosshairs of a Pipeline Revolution – smack-dab in between the Marcellus Shale fracking zones in northern and western PA and the processing and export facilities of the Eastern seaboard. This Pipeline Revolution began in earnest more than four years ago, in spring 2014, when Williams/Transco announced plans to build a 200-mile, 42-inch diameter, high-pressure (1,480 p.s.i.) underground natural gas pipeline with the Orwellian-sounding name “Atlantic Sunrise” as a shortcut to whisk fracked natural gas to points south – mainly Cove Point just south of Baltimore – for export. See map below for more context.

That’s the north-south axis of the crosshairs. East-west, for starters, is the 8-inch diameter, cast-iron Mariner East pipeline, which has traversed the state since the late 1930s, carrying gasoline from the Philadelphia region to the Pittsburgh area. Also around spring 2014, Mariner East’s owner-operator, Sunoco Logistics, announced its Mariner East expansion project: to stop carrying gasoline, reverse the flow, and start streaming natural gas liquids (NGLs – mainly propane, ethane, and butane) from the fracking zones of western PA to the Marcus Hook export facility outside Philadelphia. Also planned were several new larger-volume pipelines to be laid in the same easement – Mariner East 2 and 2X – along with their corresponding pump stations.

The two major transmission pipeline projects cross on private land atop a forested hill in Lebanon County’s South Londonderry Township – making “in the crosshairs” an apt metaphor for where we stand in relation to the Pipeline Revolution.

In response to Williams/Transco’s announcement in spring 2014, activists in neighboring Lancaster County organized the grassroots citizens’ group Lancaster Against Pipelines. We soon followed suit, holding our first organizing meeting in April in humble surroundings, an artist’s loft in downtown Lebanon. After a democratic vote,we called ourselves Lebanon Against Pipelines and began meeting bi-weekly with a core group of 8-10 people.

LPA Organizing Meeting - Crosshairs

Initial organizing meeting of Lebanon Against Pipelines (soon changed to Lebanon Pipeline Awareness), downtown Lebanon, April 2014

By summer 2014, we adopted what we felt was a more positive and publicly acceptable name in our strongly conservative county, one more in keeping with our core mission of raising public awareness about the immensely destructive power of fracking and pipelines: Lebanon Pipeline Awareness.

Making Plans

Over the next year, a core leadership emerged. With the pro-bono help of a local attorney, we became a 501c(3) non-profit corporation with officers and a board of directors, making it possible to apply for much-needed grants after our meager, mostly self-funded beginnings.

Realizing the importance of strength in numbers, from the outset we reached out to collaborate with other groups. We’ve had many key allies in this fight, especially our sister organization, Concerned Citizens of Lebanon County (CCLC). Focused on Sunoco’s Mariner East projects, CCLC has focused mainly on the judicial system to challenge the absurd notion that this project merits status as a “public utility” – most notably by pursuing civil action against Sunoco for not obtaining the proper permits before building its new pump station in West Cornwall Township.

Bringing About Change

How have we worked to raise public awareness? In most every way we can think of, given our limited resources.

We still lack a website, but we have developed and curated a highly active Facebook presence (with nearly 800 “likes” at present). We’ve designed, printed, and distributed widely an attractive tri-fold brochure and our own eye-catching logo. We’ve set up tables at most every available community event (National Night Out in Campbelltown; Historic Old Annville Day; the Lebanon County Fair; and others). We’ve organized protests and demonstrations, often in tandem with Lancaster Against Pipelines and other allied groups. We have sponsored film screenings, public safety forums, speakers from allied organizations, and informational meetings for local landowners and other concerned citizens.

Public protest by LPA

Public protest with Lancaster Against Pipelines, Annville town square, December 2015

We’ve attended local municipal meetings to encourage local authorities to pass resolutions opposing the pipelines traversing their municipalities – in two cases successfully. We’ve filed dozens of Right-To-Know requests, developing a rich archive of construction violations and disseminating our findings publicly. We’ve brought our concerns to the county commissioners’ meetings, prompting them to write letters of concern to state and federal officials and add an informational “pipelines” tab to their website. We have developed a robust presence in local media outlets – issuing press releases and writing letters to the editor and op-ed pieces, and inviting reporters to the events we sponsor – including local newspapers (like the Lebanon Daily News), regional digital media platforms (like NPR’s StateImpact), local TV and radio stations, and more. We’ve even hosted a few tours for national photographers and reporters.

Working with Others

In our interactions with local governmental authorities, we consistently act respectfully and courteously and try hard not to blindside anyone. Before attending a public meeting, we’ll send a courtesy note to the relevant authority, detailing our concerns and summarizing what we’ll be saying and asking for. When speaking at public meetings, we’re civil, crisp, and respectful – though, when necessary, we have engaged in peaceful acts of public protest (like duct-taping our mouths shut when prevented from speaking at a township meeting because we’re not township residents).

We’ve also met with all of our state representatives, either in individual meetings or during town hall-style meetings with constituents. We’ve expressed our concerns to members of Governor Tom Wolf’s staff, his Pipeline Infrastructure Task Force and other Department of Environmental Protection officials, the Susquehanna River Basin Commission, the Federal Energy Regulatory Commission, and other public bodies.

Innovative Pipeline Monitoring Program

Pipeline monitor badge

Citizen pipeline monitoring badge

More recently, with pipeline construction well underway, we’ve developed a pipeline construction monitoring program, undergoing rigorous training and developing official badges to identify ourselves and our organization. We also register all of our monitors with the county commissioners’ office (to prevent imposters from engaging in nefarious acts in our name). (See badge, right)

And it’s made a difference.

I remember well our first outreach efforts in summer 2014 at events like National Night Out in Campbelltown, where we were met with a fair amount of open hostility. “Why do you oppose American energy independence?” people would ask.  “What about all the jobs the pipelines will bring to local workers?” After four years of respectfully but insistently hammering on these issues, the public tenor has shifted. Very rarely do we encounter outright hostility anymore. The public has grown increasingly receptive to our message – especially now that construction has begun and folks can see that what we’ve predicted is now coming to pass.

Respect and Reciprocity

We’ve worked very hard to cultivate a respectable public persona and reputation, and we’ve largely succeeded. As best as we can tell, the predominant public perception is that Lebanon Pipeline Awareness is run by a group of dedicated and well-informed volunteers with an important message to share. In fact, two of our leaders were singled out last year by the local newspaper for recognition as providing a positive impact for our community. Our core group, which generally meets twice a month, has expanded to include upwards of 15 committed local activists.

We’ve also worked hard to always couple our anti-pipeline message with a positive message about renewable energy – repeatedly emphasizing that wind, solar, geothermal, and other green energies represent an increasingly viable alternative for energy and for jobs.

In It for the Long Haul

So that’s where we in Lebanon Pipeline Awareness stand at the beginning of our fifth year. Because we have every reason to expect this insane pipeline buildout to intensify, we know we’re in it for the long haul. Our goals for the coming year are to expand our membership; build on and extend our alliances even further; intensify our outreach efforts and our pipeline construction monitoring program; and continue to host public meetings for concerned property owners and citizens.

CHISPA Flyer

CHISPA Flyer – Click to enlarge

We also plan to expand our activities to include direct action campaigns like CHISPA – “Challenge in the Streets to Pipelines in PA” – where every Friday afternoon from 4-6 p.m. we’ll be lining five miles of westbound Route 422 from Lebanon to Annville with volunteers bearing provocative protest signs that challenge the thousands of passing motorists to think in fresh ways about issues like climate change, jobs, eminent domain, property rights, renewable energies, and more.

Lebanon Pipeline Awareness is but one of dozens of grassroots citizens’ organizations that have emerged across Pennsylvania over the past decade to resist the Fracking and Pipeline revolutions and insist that we follow “a better path” (the name of an emergent coalition of anti-fracking and anti-pipeline groups from across Pennsylvania). We have lost many battles against our vastly more deep-pocketed and powerful adversaries, but we’ve also made a substantial and positive difference.

Will we win the war? Yes, eventually, as global climate disruption makes increasingly clear that our most pressing need as a species is to leave the remaining stocks of fossil fuels in the ground. In the meantime, win or lose, our efforts continue – and will continue as long as these insane Fracking and Pipeline revolutions continue to imperil humankind and the web of life that sustains us all.


by Michael Schroeder, Vice President, Lebanon Pipeline Awareness, Annville, Pennsylvania

Job announcement image

Community Outreach and Communications Specialist Position

Job Announcement and Application

PURPOSE: The Community Outreach and Communications Specialist will assist and support regional and national communication activities of the FracTracker Alliance; and engage and support organizations, primarily but not exclusively at the community-scale, fighting fossil fuel harms in Pennsylvania, Ohio, and West Virginia – especially in the Ohio River corridor.

POSITION DUTIES:

  • Assist with website content development and editing, including blog posts and responding to comments
  • Assist with writing and preparing monthly e-newsletter
  • Develop and post social media content and respond to comments
  • Engage with local and regional organizations involved in fighting oil and gas harms – through email, conference calls, listserves, presentations, and attendance at key meetings
  • Elicit guest blogs from organizations and researchers working in affected communities
  • Author and post personal blogs about key community issues or fights
  • Coordinate with Manager of Data and Technology and/or regional coordinators to create maps and data analyses in support of key community issues or needs
  • Promote FracTracker’s mobile and web applications and provide training – in-person and online – to font line communities and organizations about the use of these technologies
  • Assist in updating and developing digital and printable training tools, guides, and tutorials on various topics of interest to our website visitors and clients
  • Assist in developing user surveys to obtain feedback on the FracTracker web experiences and experiences with other FracTracker tools or activities
  • Assist in engagement of news media on oil and gas issues and FracTracker’s work under direction of the Manager of Communications and Development
  • Assist with grant reporting, as needed
  • Other related-communications and community-support duties, as assigned

POSITION REPORTS TO: Manager of Communications and Development

PREFERRED SKILLS: Writing and editing; website design; media relations; public speaking; citizen science; data management; social media; teamwork; interpersonal; and familiarity with environmental justice issues, and knowledge of environmental and/or public health concerns or other issues of relevance to understanding and addressing the implications of oil and gas extraction and climate change

MINIMUM EDUCATION/QUALIFICATIONS: Bachelor’s degree in communications, journalism or related field OR natural or physical sciences, environmental studies, citizen science, social science, public health, public policy or other relevant field; three years of experience exercising the skills listed above; additional academic studies (e.g. graduate coursework or research) can substitute for work experience; ability and willingness to travel (~10% of time); valid U.S. driver’s license.

LOCATION: Pittsburgh, PA                    STATUS: Full time (37.5 hours per week) – exempt

COMPENSATION/BENEFITS: Starting salary of $45,000 – $50,000 annually (based on experience), generous healthcare benefits (medical, dental, vision), paid sick leave, 15 vacation days per year, matching 401k program

Interested candidates should apply online using the form below by July 6, 2018 at 5:00pm ET.

The deadline to apply for this position has passed.


The FracTracker Alliance studies, maps, and communicates the risks of oil and gas development to protect our planet and support renewable energy transformation. Learn more at www.FracTracker.org

The FracTracker Alliance is an equal opportunity employer. All decisions regarding recruiting, hiring, promotion, assignment, training, termination, and other terms and conditions of employment are made without unlawful discrimination on the basis of race, color, national origin, ancestry, sex, sexual orientation, gender identity or expression, religion, age, pregnancy, disability, work-related injury, covered veteran status, political ideology, genetic information, marital status, or any other factor that the law protects from employment discrimination.

PA Well Pad Violations map

Well Pad Violations in Pennsylvania

Emerging Trends

We are always learning new things at FracTracker. While we have been analyzing and mapping oil and gas (O&G) violations issued by the Department of Environmental Protection (DEP) in Pennsylvania since 2010, we have apparently been under-representing the total amount of issues associated with unconventional drilling in the state.

The reason for the missing violations is that there are inconsistencies with how well pads are classified in the compliance report. Many of these well pads – full of unconventional permits and drilled wells – are indeed categorized as “unconventional” in the DEP compliance data. Others, equally full of unconventional permits and wells, simply leave that field blank.

Therefore, any analysis for unconventional violations is likely to miss some of the incidents that are attributed to the well pad itself, as opposed to any of the wells that are found upon that well pad.

Midas Well Pad unearths issue

While we have heard about missing violation data in the past, I discovered the nature of the issue while researching the Midas Well Pad in Plum Borough, Allegheny County on the DEP resource site eFACTS, noting the presence of multiple violations at the nascent well site. However, when attempting to download the relevant data on the compliance report, the results were missing. I had entered search parameters that made sense to me, limiting results to violations in the proper county and municipality, and including an inspection date range that was broader than what was showing up on eFACTS. I had also limited results to unconventional wells, because while this is Plum’s first unconventional well pad, the back roads are dotted with dozens – if not hundreds – of conventional O&G sites.

The Midas Well Pad, as seem from Coxcomb Hill Rd. in Plum, PA

After that attempt failed, I downloaded the entire state’s worth of data, whether conventional or not, and I was able to find the 31 violations associated with the well pad.

I contacted DEP about this, wondering whether there was some data irregularity that prevented my search in Plum from finding all of the incidents that occurred there. The reply was somewhat helpful, noting that there was no county, municipality, or unconventional value associated with that well pad in the compliance report, explaining why the search result came up negative.

It is worth noting that the separate well pad report does indeed have values for all of these fields for the Midas Well Pad, so there is a lack of consistency on this issue. Even more importantly, it is worth remembering that any compliance report search that limits results using county, municipality, or unconventional variables are likely to result in incomplete results.

The violations at the Midas Well Pad are focused around erosion and sedimentation issues, wetland impacts, failure to follow approved methodology, and failure to fix some of the problems on subsequent site inspections. The compliance report includes a narrative inspection comment, giving the public a glimpse through the inspector’s eyes. Here is one of several such comments at the site:

Follow up inspection related to wetland impact reported on 2/23/18 and 2/24/18. At the time of inspection, the Operator was actively conducting earth disturbance activity associated with the construction of well pad channel 6. The Department gave verbal permission on 2/27/2018 to deviate from the construction sequence and continue with the construction of PCSM wet pond 1. At the time of inspection wet pond 1 was partially constructed. The outlet structure and emergency spillway associated with wet pond 1. At the time of inspection wet pond 1 was holding water, however the slopes were not temporary stabilized. The Operator indicated that additional work was planned for the wet pond and would be temporary stabilized. The Operator indicated a previously unidentified seep located upgradient and outside of the LOD is contributing additional water to wet pond 1. The Department recommended the Operator identify wet weather springs upgradient from wet pond 1. Additionally, the Department recommends the Operator monitor all additional flow and submit a permit modification outlines changes made to the construction sequence and identifies the location of all toe drains to be constructed on site. The Department and Operator agreed to reschedule an onsite meeting to discuss the remediation of the wetland. Th Department recommends the Operator monitor the vegetative growth in the wetland. The Department recommends that the Operator add additional temporary mulch to the disturbed area and continue to perform routine maintenance to the temporary BMPs.

How pervasive is this problem?

The DEP well pad report contains data on 12,600 wells, situated on 3,715 wells pads. On the compliance side, there are 2,689 violations at 390 different sites that contain the words “Well Pad.” 739 of these violations do not have associated Well API Numbers, and are therefore not shown in our Pennsylvania Shale Viewer map. The number of sites with violations per operator is shown below in Figure 1 (click to expand).

Figure 1: Number of well pads appearing on compliance report by operator, through 5/15/2018. Click on the image to see the full-sized version.

There are four things to note about about Figure 1. 

First, this table is not the number of violations on well pads, but merely the count of well pads with violations appearing on the compliance report.

Second, this does not contain any data on wells on those pads that were issued violations – only instances where the well pads themselves were cited are shown.

PA Well Pad Violations: 

View map fullscreen

This map shows oil and gas (O&G) violations in Pennsylvania that are assessed to well pads, as opposed to individual wells. To access the map’s legend and other details, click the double-arrow icon at the top-left corner of the map.

The third thing to note about Figure 1 is that there are instances where the same pad falls into more than one category. Hilcorp Energy, for example, has 10 wells in the unconventional category, 11 wells that are not defined, but only 13 total wells, indicating significant overlap between the categories.

And fourth, there are 31 instances where the phrase “well pad” occurs in the compliance report where the unique Site ID# does not appear on the well pad report. In some cases, the name of the facility indicates that it might be for another facility that is related to the well pad, such as “Southwest System – Well Pad 36 to Bluestone Pipeline.” For other entries, such as “Yarasavage Well Pad”, it remains unclear why the Site ID# does not yield a matching entry from the well pad report.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

 

Upper Appalachian Gas Storage Wells

New map available showing Upper Appalachian gas storage wells

FracTracker has received numerous requests to compile a regional map of natural gas storage wells. In response, we have built the dynamic map below covering storage wells in Pennsylvania, Ohio, and West Virginia:

Upper Appalachian Gas Storage Wells Map

View map fullscreen | How FracTracker maps work 

Using Our Map

The colored areas on the map above  (pink, blue, and yellow) correspond to gas storage wells in one of the three states. When you first view the map in fullscreen mode you will notice that these wells have been “generalized” into one large layer. That feature allows the map to load more quickly in your browser.

Zoom in further to where the generalized layers change to individual points in order to explore the wells more in depth, as shown in the screenshot below:

Screenshot of the Upper Appalachian Gas Storage Wells map, zoomed in


Map Metadata: Upper Appalachian Gas Storage Wells

This map shows gas storage wells in Ohio, Pennsylvania, and West Virginia.  Due to the large amount of data, generalized layers were created to show the location of the storage fields at statewide zoom levels.  To access well data, viewers must zoom in beyond the scale of 1:500,000, or about the size of a large county.  Each state’s data includes slightly different data fields.

Data Layers include:

Name: OH Storage Wells
Date: January 2018
Source: Ohio DNR
Notes: Gas storage wells in Ohio. Storage wells selected from a broader dataset by FracTracker Alliance.

Name: PA Storage Wells
Date:  January 2018
Source:  Pennsylvania DEP
Notes:  Gas storage wells in Pennsylvania. Storage wells selected from a broader dataset by FracTracker Alliance.

Name:  WV Storage Wells
Date:  January 2018
Source:  West Virginia DEP
Notes:  Gas storage wells in West Virginia. Storage wells selected from a broader dataset by FracTracker Alliance.

Name: State Boundaries
Date:  2018
Source:  USDA Geospatial Data Gateway
Notes:  State boundaries of states with gas storage wells on this map.

Shell Pipeline - Not Quite the Good Neighbor

Shell Pipeline: Not Quite the “Good Neighbor”

In August 2016, Shell Pipeline announced plans to develop the Falcon Ethane Pipeline System, a 97-mile pipeline network that will carry more than 107,000 barrels of ethane per day through Pennsylvania, West Virginia, and Ohio, to feed Shell Appalachia’s petrochemical facility currently under construction in Beaver County, PA.

FracTracker has covered the proposed Falcon pipeline extensively in recent months. Our Falcon Public EIA Project explored the project in great detail, revealing the many steps involved in risk assessments and a range of potential impacts to public and environmental health.

This work has helped communities better understand the implications of the Falcon, such as in highlighting how the pipeline threatens drinking water supplies and encroaches on densely populated neighborhoods. Growing public concern has since convinced the DEP to extend public comments on the Falcon until April 15th, as well as to host three public meetings scheduled for early April.

Shell’s response to these events has invariably focused on their intent to build and operate a pipeline that exceeds safety standards, as well as their commitments to being a good neighbor. In this article, we investigate these claims by looking at federal data on safety incidents related to Shell Pipeline.

Contrary to claims, records show that Shell’s safety record is one of the worst in the nation.

The “Good Neighbor” Narrative

Maintaining a reputation as a “good neighbor” is paramount to pipeline companies. Negotiating with landowners, working with regulators, and getting support from implicated communities can hinge on the perception that the pipeline will be built and operated in a responsible manner. This is evident in cases where Shell Pipeline has sold the Falcon in press releases as an example of the company’s commitment to safety in public comments.

Figure 1. Shell flyer

A recent flyer distributed to communities in the path of the Falcon, seen in Figure 1, also emphasizes safety, such as in claims that “Shell Pipeline has a proven track record of operating safely and responsibility and remains committed to engaging with local communities regarding impacts that may arise from its operations.”

Shell reinforced their “good neighbor” policy on several occasions at a recent Shell-sponsored information meeting held in Beaver County, stating that, everywhere they do business, Shell was committed to the reliable delivery of their product. According to project managers speaking at the event, this is achieved through “planning and training with first responders, preventative maintenance for the right-of-way and valves, and through inspections—all in the name of maintaining pipeline integrity.”

Shell Pipeline also recently created an informational website dedicated to the Falcon pipeline to provide details on the project and emphasize its minimal impact. Although, curiously, Shell’s answer to the question “Is the pipeline safe?” is blank.

U.S. Pipeline Incident Data

Every few years FracTracker revisits data on pipeline safety incidents that is maintained by the Pipeline and Hazardous Materials Safety Administration (PHMSA). In our last national analysis we found that there have been 4,215 pipeline incidents resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion.

These numbers were based on U.S. data from 2010-2016 for natural gas transmission and gathering pipelines, natural gas distribution pipelines, and hazardous liquids pipelines. It is also worth noting that incident data are heavily dependent on voluntary reporting. They also do not account for incidents that were only investigated at the state level.

Shell Pipeline has only a few assets related to transmission, gathering, and distribution lines. Almost all of their pipeline miles transport highly-volatile liquids such as crude oil, refined petroleum products, and hazardous liquids such as ethane. Therefore, to get a more accurate picture of how Shell Pipeline’s safety record stacks up to comparable operators, our analysis focuses exclusively on PHMSA’s hazardous liquids pipeline data. We also expanded our analysis to look at incidents dating back to 2002.

Shell’s Incident Record

In total, PHMSA data show that Shell was responsible for 194 pipeline incidents since 2002. These incidents spilled 59,290 barrels of petrochemical products totaling some $183-million in damages. The below map locates where most of these incidents occurred. Unfortunately, 34 incidents have no location data and so are not visible on the map. The map also shows the location of Shell’s many refineries, transport terminals, and off-shore drilling platforms.

Open the map fullscreen to see more details and tools for exploring the data.

View Map Fullscreen | How FracTracker Maps Work

Incidents Relative to Other Operators

PHMSA’s hazardous liquid pipeline data account for more than 350 known pipeline operators. Some operators are fairly small, only maintaining a few miles of pipeline. Others are hard to track subsidiaries of larger companies. However, the big players stand out from the pack — some 20 operators account for more than 60% of all pipeline miles in the U.S., and Shell Pipeline is one of these 20.

Comparing Shell Pipeline to other major operators carrying HVLs, we found that Shell ranks 2nd in the nation in the most incidents-per-mile of maintained pipeline, seen in table 1 below. These numbers are based on the total incidents since 2002 divided by the number of miles maintained by each operator as of 2016 miles. Table 2 breaks Shell’s incidents down by year and number of miles maintained for each of those years.

Table 1: U.S. Pipeline operators ranked by incidents-per-mile

Operator HVL Incidents HVL Pipeline Miles Incidents Per Mile (2016)
Kinder Morgan 387 3,370 0.115
Shell Pipeline 194 3,490 0.056
Chevron 124 2,380 0.051
Sunoco Pipeline 352 6,459 0.049
ExxonMobile 240 5,090 0.048
Colonial Pipeline 244 5,600 0.044
Enbride 258 6,490 0.04
Buckeye Pipeline 231 7,542 0.031
Magellan Pipeline 376 12,928 0.03
Marathan Pipeline 162 5,755 0.029

Table 2: Shell incidents and maintained pipeline miles by year

Year Incidents Pipeline Miles Total Damage Notes
2002 15 no PHMSA data $2,173,704
2003 20 no PHMSA data $3,233,530
2004 25 5,189 $40,344,002 Hurricane Ivan
2005 22 4,830 $62,528,595 Hurricane Katrina & Rita
2006 10 4,967 $11,561,936
2007 5 4,889 $2,217,354
2008 12 5,076 $1,543,288
2009 15 5,063 $11,349,052
2010 9 4,888 $3,401,975
2011 6 4,904 $2,754,750
2012 12 4,503 $17,268,235
2013 4 3,838 $10,058,625
2014 11 3,774 $3,852,006
2015 12 3,630 $4,061,340
2016 6 3,490 $6,875,000
2017 9 no PHMSA data $242,800
2018 1 no PHMSA data $47,000 As of 3/1/18

Cause & Location of Failure

What were the causes of Shell’s pipeline incidents? At Shell’s public informational session, it was said that “in the industry, we know that the biggest issue with pipeline accidents is third party problems – when someone, not us, hits the pipeline.” However, PHMSA data reveal that most of Shell’s incidents issues should have been under the company’s control. For instance, 66% (128) of incidents were due to equipment failure, corrosion, welding failure, structural issues, or incorrect operations (Table 3).

Table 3. Shell Pipeline incidents by cause of failure

Cause Incidents
Equipment Failure 51
Corrosion 37
Natural Forces 35
Incorrect Operation 25
Other 20
Material and/or Weld Failure 15
Excavation Damage 11
Total 194

However, not all of these incidents occurred at one of Shell’s petrochemical facilities. As Table 4 below illustrates, at least 57 incidents occurred somewhere along the pipeline’s right-of-way through public areas or migrated off Shell’s property to impact public spaces. These numbers may be higher as 47 incidents have no mention of the property where incidents occurred.

Table 4. Shell Pipeline incidents by location of failure

Location Incidents
Contained on Operator Property 88
Pipeline Right-of-Way 54
Unknwon 47
Originated on Operator Property, Migrated off Property 3
Contained on Operator-Controlled Right-of-Way 2
Total 194

On several occasions, Shell has claimed that the Falcon will be safely “unseen and out of mind” beneath at least 4ft of ground cover. However, even when this standard is exceeded, PHMSA data revealed that at least a third of Shell’s incidents occurred beneath 4ft or more of soil.

Many of the aboveground incidents occurred at sites like pumping stations and shut-off valves. For instance, a 2016 ethylene spill in Louisiana was caused by lightning striking a pumping station, leading to pump failure and an eventual fire. In numerous incidents, valves failed due to water seeping into systems from frozen pipes, or large rain events overflowing facility sump pumps. Table 5 below breaks these incidents down by the kind of commodity involved in each case.

Table 5. Shell Pipeline incidents by commodity spill volumes

Commodity Barrels
Crude Oil 51,743
Highly Volatile Liquids 6,066
Gas/Diesel/Fuel 1,156
Petroleum Products 325
Total 59,290

Impacts & Costs

None of Shell’s incidents resulted in fatalities, injuries, or major explosions. However, there is evidence of significant environmental and community impacts. Of 150 incidents that included such data, 76 resulted in soil contamination and 38 resulted in water contamination issues. Furthermore, 78 incidents occurred in high consequence areas (HCAs)—locations along the pipeline that were identified during construction as having sensitive environmental habitats, drinking water resources, or densely populated areas.

Table 6 below shows the costs of the 194 incidents. These numbers are somewhat deceiving as the “Public (other)” category includes such things as inspections, environmental cleanup, and disposal of contaminated soil. Thus, the costs incurred by private citizens and public services totaled more than $80-million.

Table 6. Costs of damage from Shell Pipeline incidents

Private Property Emergency Response Environmental Cleanup Public (other) Damage to Operator Total Cost
$266,575 $62,134,861 $11,024,900 $7,308,000 $102,778,856 $183,513,192

A number of significant incidents are worth mention. For instance, in 2013, a Shell pipeline rupture led to as much as 30,000 gallons of crude oil spilling into a waterway near Houston, Texas, that connects to the Gulf of Mexico. Shell’s initial position was that no rupture or spill had occurred, but this was later found not to be the case after investigations by the U.S. Coast Guard. The image at the top of this page depicts Shell’s cleanup efforts in the waterway.

Another incident found that a Shell crude oil pipeline ruptured twice in less than a year in the San Joaquin Valley, CA. Investigations found that the ruptures were due to “fatigue cracks” that led to 60,000 gallons of oil spilling into grasslands, resulting in more than $6 million in environmental damage and emergency response costs. Concerns raised by the State Fire Marshal’s Pipeline Safety Division following the second spill in 2016 forced Shell to replace a 12-mile stretch of the problematic pipeline, as seen in the image above.

Conclusion

These findings suggest that while Shell is obligated to stress safety to sell the Falcon pipeline to the public, people should take Shell’s “good neighbor” narrative with a degree of skepticism. The numbers presented by PHMSA’s pipeline incident data significantly undermine Shell’s claim of having a proven track record as a safe and responsible operator. In fact, Shell ranks near the top of all US operators for incidents per HVL pipeline mile maintained, as well as damage totals.

There are inherent gaps in our analysis based on data inadequacies worth noting. Incidents dealt with at the state level may not make their way into PHMSA’s data, nor would problems that are not voluntary reported by pipeline operators. Issues similar to what the state of Pennsylvania has experienced with Sunoco Pipeline’s Mariner East 2, where horizontal drilling mishaps have contaminated dozens of streams and private drinking water wells, would likely not be reflected in PHMSA’s data unless those incidents resulted in federal interventions.

Based on the available data, however, most of Shell’s pipelines support one of the company’s many refining and storage facilities, primarily located in California and the Gulf states of Texas and Louisiana. Unsurprisingly, these areas are also where we see dense clusters of pipeline incidents attributed to Shell. In addition, many of Shell’s incidents appear to be the result of inadequate maintenance and improper operations, and less so due to factors beyond their control.

As Shell’s footprint in the Appalachian region expands, their safety history suggests we could see the same proliferation of pipeline incidents in this area over time, as well.

NOTE: This article was amended on 4/9/18 to include table 2.

Header image credit: AFP Photo / Joe Raedle

By Kirk Jalbert, FracTracker Alliance

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Report: Potential Impacts of Unconventional Oil and Gas on the Delaware River Basin

Mariner East 2: More Spills & Sinkholes Too?

The Mariner East 2 (ME2) pipeline, currently being built by Sunoco Pipeline (Energy Transfer Partners), is a massive 350-mile long pipeline that, if completed, will carry 275,000 barrels of propane, ethane, butane, and other hydrocarbons per day from the shale gas fields of Western Pennsylvania to a petrochemical export terminal located on the Delaware River.

ME2 has faced numerous challenges from concerned citizens since Sunoco first announced plans for the project in 2014. Fights over taking private property by eminent domain, eyebrow raising permit approvals with known technical deficiencies, as well as nearly a hundred drilling mud spills — inadvertent returns (IRs) — at horizontal directional drilling (HDD) sites have occurred since work began in 2017.

This article and the accompanying map brings us up-to-date on the number, location, and status of ME2’s HDD spills. We also summarize the growing list of violations and settlements related to these events. Finally, we highlight the most recent concerns related to ME2’s construction: sinkholes emerging along the pipeline’s path in karst geological formations.

Map of ME2 Updated HDDs, IRs & Karst

The map below shows an updated visual of ME2’s IRs, as of the DEP’s latest tally on March 1, 2018. Included on this map are HDDs where DEP ordered Sunoco reevaluate construction sites to prevent additional spills. Also identified on this map are locations where Sunoco was ordered to notify landowners in close proximity to certain HDDs prior to additional drilling. Finally, the below map illustrates how sinkholes are not a problem unique to one site of construction but are, in fact, common to many areas along ME2’s route. These topics are discussed in greater depth below.

Open the map full-screen to view additional layers not available in the embedded version below.

View Map Fullscreen | How FracTracker Maps Work

HDDs & Inadvertent Returns – Redux

In July 2017, the PA Environmental Hearing Board granted a two week halt to ME2’s HDD operations. The temporary injunction was in response to petitions from the Clean Air CouncilMountain Watershed Association, and the Delaware Riverkeeper Network following IRs­­ at more than 60 sites that contaminated dozens of private drinking water wells, as well as nearby streams and wetlands. FracTracker first wrote about these issues in this prior article.

HDD IR in Washington County
(image: Observer-Reporter)

Despite these issues, and despite Sunoco being cited for 33 violations, ME2 was allowed to proceed under an August 7th agreement that stated Sunoco must reevaluate their HDD plans to minimize additional spills. These studies were to include re-examining the site’s geology and conducting seismic surveys. Sites for reevaluation were selected based on factors such as proximity water supplies, nearby streams and wetlands, problematic geologic conditions, and if an IR had occurred at that site previously. Of ME2’s 230 HDDs, 64 were ordered for reevaluation — 22 of these were selected due to prior IRs occurring at the site.

The DEP mandated that Sunoco’s reevaluation studies be put out for public comment. A table of which HDD studies are currently out for comment can be found here. DEP’s settlement also required Sunoco to notify landowners in proximity to certain HDDs prior to commencing construction due to elevated risks. Of the 64 HDD sites under review, Sunoco must notify 17 residents within 450ft of an HDD site, and 22 residents within 150ft of other sites. The HDD reevaluation sites are shown on the FracTracker map above. Below is an illustration of one site where Sunoco is required to notify landowners within 450ft.

One issue residents have raised with these notifications is that Sunoco is allowed to offer landowners the option to connect their homes to a water buffalo during drilling as an alternative to using their groundwater well. The catch is that, if their well does become contaminated, they would also waive their right to have Sunoco drill them a new replacement well.

“Egregious Violations”

In January 2018, the DEP again suspended ME2’s construction, this time indefinitely revoking their permits, due to even more IRs. DEP also cited Sunoco for “egregious and willful” permit violations —mainly executing HDDs at sites where they had no permission to do so. The DEP noted of their decision that, “a permit suspension is one of the most significant penalties DEP can levy.”

Nevertheless, Sunoco was again allowed to resume construction on February 8, 2018, after paying a $12.6 million fine. The DEP press release accompanying the decision assured the public that, “Sunoco has demonstrated that it has taken steps to ensure the company will conduct the remaining pipeline construction activities in accordance with the law and permit conditions, and will be allowed to resume.”

A few weeks later, Sunoco ran a full-page advertisement in the Harrisburg Patriot-News, shown above, lauding their safety record. Among other notables, the piece boasts, “State and federal regulators spent more than 100 inspection days during 2017 on the Mariner East project, more inspection days than on any other pipeline in Pennsylvania.” Critics have noted that the inordinate number of inspections are due to the comedy of errors associated with ME2’s construction.

Karst Formations & Sinkholes

Which brings us to the current ME2 debacle. Last week, the PA Public Utility Commission (PUC) ordered a temporary shutdown of Mariner East 1 (ME1), another natural gas liquids pipeline owned by Sunoco/ETP. ME1 was built in the 1930s and its right-of-way is being used for most of ME2’s route across the state. This latest construction setback comes in the wake of numerous sinkholes that emerged beginning in December along Lisa Drive in West Whitehead Township, a suburb of Philadelphia in Chester County.

The most recent of these sinkholes grew into a 20ft-deep, 15ft-wide chasm that exposed portions of ME1 and came within 10ft of a house. It is worth noting that, until only a few days ago, ME1 was an operational 8in pipeline with a potential impact radius (aka “blast zone”) of some 500ft. The PUC ordered that Sunoco must now run a line inspection on ME1 for a mile upstream and a mile downstream from the sinkhole sites along Lisa Drive, seen in the image below. Note the proximity of these sinkholes to Amtrak’s Keystone rail lines (connecting Pittsburgh to Philadelphia), under which ME2 also runs. The Federal Railway Administration only recently learned of the sink holes from a nearby resident.

The Lisa Drive sinkholes are being credited to Sunoco executing an HDD in an area known to have karst geological formations. Sunoco has been ordered by the PUC to conduct more geophysical testing and seismic analyses of the area because of this. Karst is often called the “Swiss cheese” of geology — notorious for caves, sinkholes, and underground rivers. As these geological formations change shape, pipelines can bend and settle over time, ultimately leading to potentially dangerous gas leakages or explosions. For instance, the 2015 Atex-1 pipeline explosion in Follansbee, WV, was ultimately determined by the Pipeline and Hazardous Materials Safety Administration (PHSA) as having been caused by ground settling. That explosion released some 24,000 barrels of ethane, burning more than five acres of surrounding land.

The US Geological Survey (USGS) maintains fairly detailed maps of rock formations for most states, including formations known to have karst. In PA, there are a number of “carbonate” rock families known for karst features and settlement issues: limestone and dolostone, and, to a lesser extent, shale. Meanwhile, the PA Department of Conservation and Natural Resources (DCNR) has maintained a record of karst “features” — sinkholes and surface depressions — documented since 1985. A great explanation of the different types of karst features can be found here.

Underestimating the Risks

What is concerning about the Lisa Drive sinkholes is that Sunoco had supposedly already conducted additional karst geological reviews of the area as part of the August DEP settlement, subsequently ranking a nearby HDD (#PA-CH-0219) as “low risk” for running into karst issues—despite knowing the HDD runs through a karst formation with sinkholes and surface depressions in the area. For the HDD that runs the length of Lisa Drive (#PA-CH-0256), the study rated its risk as “very low.” These two HDDs are shown below, along with the area of ME1 now under structural review.

The likely result of these inaccurate assessments led to two IRs at Lisa Drive, one in October and another in November 0f 2017. DEP’s writeup of these events note that the total volume of drilling muds spilled remains unknown because Sunoco didn’t report the incident. Then, only a month later, sinkholes emerged in the same locations. An image of the November HDD IR is shown below.

It is important to note two additional things of Sunoco’s karst study, an except of which is seen in their map of the West Whiteland area below. First, Lisa Drive is just on the edge of a karst limestone formation. USGS data suggest the location is actually mica schist, but the USGS data is also only a rough estimate of different formations. This underscores why pipeline companies must be required to conduct detailed geotechnical analysis of all HDD sites at the onset of their projects.

The other notable aspect of Sunoco’s study is that it does not fully represent all rock formations known to have karst features. In Sunoco’s map, we see orange shading for limestone, but this does not include dolostone that underlies the many surface depressions and sinkholes surrounding West Whiteland. FracTracker’s map includes these formations for greater accuracy.

Takeaways

Interestingly, as Anya Litvak of the Pittsburgh Post-Gazette observed in her reporting on the Lisa Drive incident, Sunoco’s updated karst assessment ranked the entire route of the ME2 pipeline through the state as “low to very low” risk for potential issues. Furthermore, Sunoco has tried to downplay the Lisa Drive incident, stating that “all areas have been secured,” and that additional incidents are unlikely to occur.

But the overall relationship between Mariner East 2’s IRs, HDD sites, and known karst features tells a very different story than Sunoco’s about the potential risks of ME2. In addition to the concerns about new sinkholes near Lisa Drive, FracTracker found the following in our analysis:

  • 7 sinkholes and 386 surface depressions are within 1,500ft of a ME2 HDD site.
  • Of the 230 HDDs, 87 are located in carbonate rock areas (52 in limestone/dolostone, 35 in shale).
  • Of the 99 IRs, 39 have occurred in carbonate rock areas (23 in limestone/dolostone, 16 in shale).

In other words, nearly half of the IRs caused by ME2 HDDs were located in areas known to have karst formations. Worth noting is that an additional 15 occurred in sandstone formations, also known to cause settlement over time. The remaining IRs are split across nine other formation types.

Considering that the DEP’s current review of Sunoco’s ability to safely execute future HDDs are based on the same karst study that missed the Lisa Drive HDD and ranked nearby HDDs as a “low” risk, one can only assume that additional spills will occur. There are many more HDD sites yet to be drilled, and also not likely studied fully for potential karst risks. As illustrated by the continuing saga of spills, violations, and omissions, it is clear that Sunoco has not maintained a high standard of construction in building ME2 from the onset.

We thank Eric Friedman from the Middletown Coalition for Community Safety for supplying photos of the Lisa Drive site used in this article.

By Kirk Jalbert, FracTracker Alliance

High Impact Areas and Donut Holes - Variability in PA's Unconventional O&G Industry map

High Impact Areas and Donut Holes – A Look at Unconventional O&G Activity in PA

FracTracker Alliance has been mapping the impacts of unconventional oil and gas (O&G) drilling activity in Pennsylvania since 2010, and the Pennsylvania Shale Viewer is our most complete map to show the impacts of the industry.

While it can rightly be said that the development of the Marcellus Shale and other unconventional formations have affected half the state since 2005, this analysis takes a look at high impact areas, as well as a closer look at areas that have been avoided so far.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Falcon Public EIA Project feature image

Wingspan of the Falcon Pipeline

A Public EIA of Shell’s Ethane Cracker Pipeline

Pittsburgh, Pennsylvania – Jan. 29 – FracTracker Alliance has released a detailed environmental impact assessment (EIA), including digital maps, of the Falcon Ethane Pipeline being built to feed Shell Appalachia’s ethylene cracker plant in Beaver County, PA.

FracTracker’s Falcon Public EIA Project offers a rich series of interactive maps and articles detailing the Falcon’s proposed route through PA, WV, and OH, likely impacts to waterways, potential blast zones, ecological footprint, proximity to hazardous industrial areas, and more.

Given the issues associated with Mariner East 2 – a PA-based natural gas liquids pipeline whose history has been fraught with citations, public scrutiny is a crucial facet of pipeline construction. The Falcon Public EIA Project represents the first time that public stakeholders have been given such a significant amount of time and detail to investigate a proposed pipeline, including access to specific location information. Public comments are being accepted by the PA Department of Environmental Protection on the Falcon’s permit until February 20th.

“Companies are generally not required to publicly disclose GIS data when applying for permits,” remarked Kirk Jalbert, project lead and Manager of Community Based Research and Engagement at FracTracker. “While concerned citizens can stitch together paper maps provided by companies in their applications, that process can be complex and very labor intensive.”

With FracTracker’s project, however, digital maps and figures are front and center.

Early access to what is being proposed for the Falcon pipeline will enable nearby communities to better understand how its construction and the associated ethane cracker facility, which will produce 1 million tons of ethylene annually for making plastics, will affect their lives. Upon analyzing the data, FracTracker uncovered a number of particularly noteworthy statistics, for example:

  • There are 97.5 miles of pipeline proposed to be built through 22 townships in 3 states.
  • 2,000 properties have been surveyed; 765 easements executed.
  • Falcon will intersect 319 streams and 174 wetlands, with hundreds more proximate to work areas.
  • 550 family residences, 20 businesses, 240 groundwater wells, 12 public parks, 5 schools, 6 daycare centers, and 16 emergency response centers are within potential risk areas.
  • Learn more

“Extreme levels of risk and injustice are commonplace in petrochemical pipeline siting, as well as in where their contents come from and how they get used. This project provides context for the importance of reducing these impacts, both for curtailing environmentally unfriendly plastics as well as for moving away from fossil fuel dependencies,” said Brook Lenker, Executive Director of FracTracker.

The Falcon Public EIA Project is meant to expand public dialogue about what should be included in EIAs and how they should apply to petrochemical pipelines. The project also serves as a model for how regulatory agencies can be more transparent with data when engaging the public. This is especially important in the case of the Falcon pipeline, which will be exempt from Federal Energy Regulatory Commission (FERC) scrutiny and, therefore, not be subject to a full environmental impact assessment.

Events

Nothing Found

Sorry, no posts matched your criteria