Posts

Who Pays? Health and Economic Impacts of Fracking in Pennsylvania

Since the advent of unconventional shale gas drilling, some effects have been immediate, some have emerged over time, and some are just becoming apparent. Two reports recently published by the Delaware Riverkeeper Network advance our understanding of the breadth of the impacts of fracking in Pennsylvania. The first report, written by FracTracker, reviews research on the ways fracking impacts the health of Pennsylvanians. The second report by ECONorthwest calculates the economic costs of the industry.

“Fracking is heavily impacting Pennsylvania in multiple ways but the burden is not being fairly and openly calculated. These reports reveal the health effects and economic costs of fracking and the astounding burdens people and communities are carrying,” said Maya van Rossum, the Delaware Riverkeeper.

Learn what the latest science and analysis tells us about the costs of fracking, who is paying now, and what the future price is forecasted to be.

Access the full reports here:

 

[av_font_icon icon=’ue84b’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Health Impact Report

“Categorical Review of Health Reports on Unconventional Oil and Gas Development; Impacts in Pennsylvania,”  FracTracker Alliance, 2019 Issue Paper

[av_font_icon icon=’ue84b’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Economic Impact Report

“The Economic Costs of Fracking in Pennsylvania,” ECONorthwest, 2019 Issue Paper
 
 

 

From the Experts

“The FracTracker Alliance conducted a review of the literature studying the impact of unconventional oil and gas on health. Findings of this review show a dramatic increase in the breadth and volume of literature published since 2016, with 89% of the literature reporting that drilling proximity has human health effects. Pennsylvanian communities were the most studied sample populations with 49% of reviewed journal articles focused on Marcellus Shale development. These studies showed health impacts including cancer, infant mortality, depression, pneumonia, asthma, skin-related hospitalizations, and other general health symptoms were correlated with living near unconventional oil and gas development for Pennsylvania and other frontline communities.”

Kyle Ferrar, FracTracker Alliance Western Program Coordinator

 

Rig and house. Westwood Lake Park. Photo by J Williams, 2013.

“Fracking wells have an extensive presence across Pennsylvania’s landscape – 20 percent of residents live within 2 miles of a well. This is close enough to cause adverse health outcomes. Collectively we found annual costs of current fracking activity over $1 billion, with cumulative costs given continued fracking activity over the next 20 years of over $50 billion in net present value for the effects that we can monetize. The regional economic benefits also seem to be less than stated, as the long-term benefits for local economies are quite low, and can disrupt more sustainable and beneficial economic trajectories that might not be available after a community has embraced fracking.”

Mark Buckley, Senior Economist at the natural resource practice at
ECONorthwest

 

These reports on the health effects and economic impacts of unconventional oil and natural gas development yield disheartening results. There are risks of extremely serious health issues for families in impacted areas, and the long term economic returns for communities are negative.

Arming ourselves with knowledge is an important first step towards the renewable energy transformation that is so clearly needed. The stakes are too high to allow the oil and natural gas industries to dictate the physical, social, and economic health of Pennsylvanians.

The Falcon Public Monitoring Project

Part of the Falcon Public EIA Project

In March of 2019, two and a half years after Shell Pipeline Co. announced plans for the Falcon Ethane Pipeline System, the imported pipes arrived at the Port of Philadelphia. As tree clearing and construction begins, we share frustration with residents that the project is underway while many of our concerns remain unaddressed.

Between 2010 and 2018, over 280 pipeline incidents were reported in Ohio, West Virginia, and Pennsylvania (the three states the Falcon crosses). Of those incidents, 70 were fires and/or explosions. As regulatory agencies and operators fail to protect the public, communities are taking the reins.

Residents of southwest PA gather along the Falcon route

Environmental organizations are training the public to spot construction violations and appealing inadequate pipeline permits. Impacted residents are running for office, testifying in court, and even spending time in prison to protect their communities.

These grassroots efforts are contributing to a shift in public perception about the safety and need of pipelines. In some cases, including with the Northeast Energy Direct Pipeline and the Constitution Pipeline, organizing efforts are helping stop projects before they begin.

We invite all residents along the Falcon route to get involved in ongoing efforts to monitor construction. Below, you’ll find a guide to reporting violations as well as high-risk areas along the Falcon route that require close monitoring.

Be a citizen watchdog

[av_font_icon icon=’ue80f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Taking photos of pipeline development and recording your observations is a great way to monitor impacts. One tool to use while monitoring is the FracTracker mobile app (search “FracTracker” in the App Store or Google Play to download for free). The app allows the public to submit geolocated photos and descriptions of development, such as pipelines and wells, and concerns, such as spills and noise pollution. These reports help FracTracker crowdsource data and alert us to concerns that need follow up action. The app also contains a map of wells, pipelines, and compressor stations, including the Falcon pipeline route for reference in the field.

Click on the images below to view app reports of Falcon construction.

Documenting violations

During the construction phase, incidents often occur when companies cause erosion of the ground and release sediment, equipment, or discharge into waterways. Mountain Watershed Association and Clean Air Council have provided the following information on the process of looking for and documenting violations.

Step 1) Document baseline conditions. Documenting the pre-construction status of an area is crucial for understanding how it’s been impacted down the road. Document baseline conditions by taking photos, videos, and notes at different sites, and include the location and date on these materials (the Fractracker app does this for you automatically). Observing sites at different times and in different weather (such as during or after a storm) will give you the best data.

Step 2) Know what to look for. Below are images and descriptions of common construction violations.

Filtration Failure

Drilling fluid spill

For more violations, checkout Pipeline CSI’s list of Top Ten Observable Non-Compliance Issues.

3) File a Report. File an official complaint to your state environmental regulatory agency.

Your concerns can be sent to regulatory agencies using the following contact information:

4) Contact support organizations. There are several organizations ready to take action once violations have been confirmed. For confirmed violations in Beaver County, PA, contact Alex Bomstein, at the Clean Air Council (215-567-4004 x118) and for confirmed violations in Allegheny or Washington Counties, PA, contact Melissa Marshall at the Mountain Watershed Association (724-455-4200 x7#). For violations in Ohio or West Virginia, reach out to FracTracker (412-802-0273).

Reports made on the FracTracker App are shared with any app user and the FracTracker team, who look through the reports and contact users for any required follow up. App reports can also be submitted to regulatory agencies electronically. Simply visit the web version of the app, click on your report, and copy the URL (web address) of your report. Then “paste” it into the body of an email or online complaint form. The receiver will see the exact location, date, and any notes or photos you included in the report.

Where should you be monitoring?

Monitoring efforts must be limited to publicly accessible land. In general, areas that are most at-risk for environmental impact include stream and wetland crossings, steep slopes (particularly those near water crossings), flood-prone zones, and areas where storm water runoff will reach waterways. View a map of the Falcon’s water crossings here, and continue reading for more vulnerable locations to monitor.

The information below identifies high-risk areas along the pipeline route where monitoring efforts are extra necessary due to their impacts on drinking water, wetlands, undermined areas, and vulnerable species.

Drinking Water

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

We found 240 private water wells within 1/4 mile of the Falcon.

While all of these wells should be assessed for their level of risk with pipeline construction, the subset of wells nearest to horizontal directional drilling (HDD) sites deserve particular attention. HDD is a way of constructing a pipeline that doesn’t involve digging a trench. Instead, a directional drilling machine is used to drill horizontally underground and the pipe is pulled through.

While an HDD is designed to avoid surface impacts, if rushed or poorly executed, it can damage surface water, groundwater, and private property. The Mariner East 2 pipeline construction left several families without water after construction crews punctured an aquifer at an HDD site.

Shell’s data highlights 24 wells that are within 1,000 feet of a proposed HDD site.

We’ve isolated the groundwater wells and HDDs in a standalone map for closer inspection below. The 24 most at-risk wells are circled in blue.

View Map Fullscreen | How FracTracker Maps Work

Testing your groundwater quality before construction begins is crucial for determining impacts later on. Two upcoming workshops in Washington County, PA and another in Beaver County, PA will discuss how to protect your water and property.

The Falcon’s HDD locations offer disturbing similarities to what caused the Mariner East pipeline spills. Many of Sunoco’s failures were due to inadequately conducted (or absent) geophysical surveys that failed to identify shallow groundwater tables, which then led to drilling mud entering streams and groundwater.

Figure 1 below shows Greene Township, Beaver County, just south of Hookstown, where the “water table depth” is shown. The groundwater at this HDD site averages 20ft on its western side and only 8ft deep on the eastern side.

Figure 1. Water table depth in Greene Township

Water Reservoirs

The Falcon also crosses the headwaters of two drinking water reservoirs: the Tappan Reservoir in Harrison County, OH (Figure 2) and the Ambridge Reservoir in Beaver County, PA (Figure 3).  The Falcon will also cross the raw water line leading out of the Ambridge Reservoir.

The Ambridge Reservoir supplies water to five townships in Beaver County (Ambridge, Baden, Economy, Harmony, and New Sewickley) and four townships in Allegheny County (Leet, Leetsdale, Bell Acres & Edgeworth). The Tappan Reservoir is the primary drinking water source for residents in Scio.

Figure 2. Tappan Reservoir and the Falcon route in Harrison County, Ohio

Figure 3. Ambridge Reservoir and the Falcon route in Beaver County, Pennsylvania

Wetlands

Wetlands that drain into Raccoon Creek in Beaver County, PA will be particularly vulnerable in 2 locations. The first is in Potter Township, off of Raccoon Creek Rd just south of Frankfort Rd, where the Falcon will run along a wooded ridge populated by half a dozen perennial and intermittent streams that lead directly to a wetland, seen in Figure 4. Complicating erosion control further, Shell’s survey data shows that this ridge is susceptible to landslides. This area is also characterized by the USGS as having a “high hazard” area for soil erosion.

Figure 4. Wetlands and streams in Potter Township, PA

The other wetland area of concern along Raccoon Creek is found in Independence Township at the Beaver County Conservation District (Figure 5). Here, the Falcon will go under the Creek using HDD (highlighted in bright green). Nevertheless, the workspace needed to execute the crossing is within the designated wetland itself. An additional 15 acres of wetland lie only 300ft east of the crossing but are not accounted for in Shell’s data. This unidentified wetland is called Independence Marsh, considered the crown jewel of the Independence Conservancy’s watershed stewardship program.

Figure 5. Wetlands and Raccoon Creek in Independence Township, PA

Subsurface concerns

Shell’s analysis shows that 16.8 miles of the Falcon pipeline travel through land that historically has or currently contains coal mines. Our analysis using the same dataset suggests the figure is closer to 20 miles. Construction through undermined areas poses a risk for ground and surface water contamination and subsidence. 

Of these 20 miles of undermined pipeline, 5.6 miles run through active coal mines and are located in Cadiz Township, OH (Harrison Mining Co. Nelms Mine, seen in Figure 6); Ross Township, OH (Rosebud Mining Co. Deep Mine 10); and in Greene Township, PA (Rosebud Mining Co. Beaver Valley Mine). 

Figure 6. Coal mines and are located in Cadiz Township, OH

For a complete map of mined areas, click here.

More than 25 of the Falcon’s 97 pipeline miles will be laid within karst landscapes, including 9 HDD sites. Karst is characterized by soluble rocks such as limestone prone to sinkholes and underground caves. A cluster of these are located in Allegheny and Washington counties, PA, with extensive historical surface mining operations.

The combination of karst and coal mines along Potato Garden Run, in Figure 7, make this portion of the pipeline route particularly risky. At this HDD site, the Falcon will cross a coal waste site identified in the permits as “Imperial Land Coal Slurry” along with a large wetland.

Figure 7. Coal mines in Imperial, Pennsylvania

Vulnerable species

Southern Redbelly Dace

The Southern Redbelly Dace, a threatened species, is especially vulnerable to physical and chemical (turbidity, temperature) changes to their environment. PA Fish and Boat Commission explicitly notes in their correspondence with Shell that “we are concerned about potential impacts to the fish, eggs and the hatching fry from any in-stream work.” Of note is that these sites of concern are located in designated “High Quality/Cold Water Fishes” streams of the Service Creek watershed (Figure 8). PFBC stated that that no in-stream work in these locations should be done between May 1 and July 31.

Figure 8. “High Quality/Cold Water Fishes” streams identified as habitat for the Southern Redbelly Dace

Northern Harriers & Short-Eared Owls

Portions of the Falcon’s workspace are located near 6 areas with known occurrences of Short-eared Owls (PA endangered species) and Northern Harriers (PA threatened species). Pennsylvania Game Commission requested a study of these areas to identify breeding and nesting locations, which were executed from April-July 2016 within a 1,000-foot buffer of the pipeline’s workspace (limited to land cover areas consisting of meadows and pasture). One Short-eared Owl observation and 67 Northern Harrier observations were recorded during the study. PGC’s determined that, “based on the unusually high number of observations at these locations” work should not be done in these areas during harrier breeding season, April 15 through August 31.

Figure 9. Surveyed areas for Short-eared Owls (PA endangered species) and Northern Harriers (PA threatened species)

Bald Eagles

A known Bald Eagle nest is located in Beaver County. Two potential “alternate nests” are located where the Falcon crosses the Ohio River. National Bald Eagle Management Guidelines bar habitat disturbances that may interfere with the ability of eagles to breed, nest, roost, and forage. The 1 active nest in close proximity to the Falcon, called the Montgomery Dam Nest, is located just west of the pipeline’s terminus at Shell’s ethane cracker facility.

U.S. Fish and Wildlife Service requested that Shell only implement setback buffers for the one active nest at Montgomery Dam (Figure 10). These include no tree clearing within 330 feet, no visible disturbances with 660 feet, and no excessive noise with 1,000 feet of an active nest. Furthermore, Shell must avoid all activities within 660ft of the nest from January 1st to July 31st that may disturb the eagles, including but not limited to “construction, excavation, use of heavy equipment, use of loud equipment or machinery, vegetation clearing, earth disturbance, planting, and landscaping.

Figure 10. Bald Eagle nest in Potter Township, Pennsylvania

Bats

The Falcon is located within the range of federally protected Indiana Bats and Northern Long-eared Bats in Pennsylvania and West Virginia. In pre-construction surveys, 17 Northern Long-eared Bats were found at 13 of the survey sites, but no Indiana Bats were captured.

A total of 9 Northern Long-eared Bat roost trees were located, with the nearest roost tree located 318 feet from the pipeline’s workspace. Figure 11 below shows a cluster of roost trees in Raccoon Township, PA. For a map of all the roost trees, click here. The U.S. Fish and Wildlife Service stated that “Due to the presence of several Northern Long-eared Bat roost trees within the vicinity of the project footprint (although outside of the 150-foot buffer), we recommend the following voluntary conservation measure: No tree removal between June 1 and July 31.”

The Pennsylvania Game Commission noted in early correspondences that Silver-haired Bats may be in the region (a PA species of special concern). PGC did not require a further study for the species, but did request a more restrictive conservation of no tree clearing between April 1 and October 31.

Figure 11. Northern long-eared bat roost trees in Raccoon Township, Pennsylvania

For more information on the wildlife impacts of the Falcon Pipeline, click here.

***

To continue reading about this pipeline, visit the Falcon Public EIA Project. 

By documenting the impacts of the Falcon Pipeline, you’re contributing to a growing body of work that shows the risks of fossil fuel pipelines. Not only does this evidence protect drinking water and vulnerable species, it serves as evidence against an inherently dangerous project that will contribute to climate change and the global plastics crisis.

We hope you’re inspired to take action and add your voice to a growing team in the region committed to safer and healthier environments. Thank YOU for your dedication to the cause!

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance.

Portions of this article were adapted from previous posts in the Falcon Public EIA Project, written by Kirk Jalbert.

Release: The 2019 You Are Here map launches, showing New York’s hurdles to climate leadership

For Immediate Release

Contact: Lee Ziesche, lee@saneenergyproject.org, 954-415-6282

Interactive Map Shows Expansion of Fracked Gas Infrastructure in New York State

And showcases powerful community resistance to it

New York, NY – A little over a year after 55 New Yorkers were arrested outside of Governor Cuomo’s door calling on him to be a true climate leader and halt the expansion of fracked gas infrastructure in New York State, grassroots advocates Sane Energy Project re-launched the You Are Here (YAH) map, an interactive map that shows an expanding system of fracked infrastructure approved by the Governor.

“When Governor Cuomo announced New York’s climate goals in early 2019, it’s clear there is no room for more extractive energy, like fossil fuels.” said Kim Fraczek, Director of Sane Energy Project, “Yet, I look at the You Are Here Map, and I see a web of fracked gas pipelines and power plants trapping communities, poisoning our water, and contributing to climate change.”

Sane Energy originally launched the YAH map in 2014 on the eve of the historic People’s Climate March, and since then, has been working with communities that resist fracked gas infrastructure to update the map and tell their stories.

“If you read the paper, you might think Governor Cuomo is a climate leader, but one look at the YAH Map and you know that isn’t true. Communities across the state are living with the risks of Governor Cuomo’s unprecedented buildout of fracked gas infrastructure,” said Courtney Williams, a mother of two young children living within 400 feet of the AIM fracked gas pipeline. “The Governor has done nothing to address the risks posed by the “Algonquin” Pipeline running under Indian Point Nuclear Power Plant. That is the center of a bullseye that puts 20 million people in danger.”

Fracked gas infrastructure poses many of the same health risks as fracking and the YAH map exposes a major hypocrisy when it comes to Governor Cuomo’s environmental credentials. The Governor has promised a Green New Deal for New York, but climate science has found the expansion of fracking and fracked gas infrastructure is increasing greenhouse gas emissions in the United States.

“The YAH map has been an invaluable organizing tool. The mothers I work with see the map and instantly understand how they are connected across geography and they feel less alone. This solidarity among mothers is how we build our power ,” said Lisa Marshall who began organizing with Mothers Out Front to oppose the expansion of the Dominion fracked gas pipeline in the Southern Tier and a compressor station built near her home in Horseheads, New York. “One look at the map and it’s obvious that Governor Cuomo hasn’t done enough to preserve a livable climate for our children.”

“Community resistance beat fracking and the Constitution Pipeline in our area,” said Kate O’Donnell  of Concerned Citizens of Oneonta and Compressor Free Franklin. “Yet smaller, lesser known infrastructure like bomb trucks and a proposed gas decompressor station and 25 % increase in gas supply still threaten our communities.”

The YAH map was built in partnership with FracTracker, a non-profit that shares maps, images, data, and analysis related to the oil and gas industry hoping that a better informed public will be able to make better informed decisions regarding the world’s energy future.

“It has been a privilege to collaborate with Sane Energy Project to bring our different expertise to visualizing the extent of the destruction from the fossil fuel industry. We look forward to moving these detrimental projects to the WINS layer, as communities organize together to take control of their energy future. Only then, can we see a true expansion of renewable energy and sustainable communities,” said Karen Edelstein, Eastern Program Coordinator at Fractracker Alliance.

Throughout May and June Sane Energy Project and 350.org will be traveling across the state on the ‘Sit, Stand Sing’ tour to communities featured on the map to hold trainings on nonviolent direct action and building organizing skills that connect together the communities of resistance.

“Resistance to fracking infrastructure always starts with small, volunteer led community groups,” said Lee Ziesche, Sane Energy Community Engagement Coordinator. “When these fracked gas projects come to town they’re up against one of the most powerful industries in the world. The You Are Here Map and ‘Sit, Stand Sing’ tour will connect these fights and help build the power we need to stop the harm and make a just transition to community owned renewable energy.”

Getting Rid of All of that Waste – Increasing Use of Oil and Gas Injection Wells in Pennsylvania

Oil and gas development generates a lot of liquid waste.

Some of the waste comes that comes out of a well is from the geologic layer where the oil and gas resources are located. These extremely saline brines may be described as “natural,” but that does not make them safe, as they contain dangerous levels of radiation, heavy metals, and other contaminants.

Additionally, a portion of the industrial fluid that was injected into the well to stimulate production, known as hydraulic fracturing fluid, returns to the surface.  Some of these substances are known carcinogens, while others remain entirely secret, even to the personnel in the field who are employed to use the additives.

The industry likes to remind residents that they have used this technique for more than six decades, which is true. What separates “conventional” fracking from developing unconventional formations such as the Marcellus Shale is really a matter of scale.  Conventional formations are often stimulated with around 10,000 gallons of fluid, while unconventional wells now average more than 10 million gallons per well.

In 2017 alone, Pennsylvania oil and gas wells generated 57,653,023 barrels (2.42 billion gallons) of liquid waste.

Managing the waste stream

Liquid waste can be reused to stimulate other oil and gas wells, but reuse concentrates the contaminant load in the fluid. There is a limit to this concentration that operators can use, even for this industrial purpose.

Another strategy is to decrease the volume of the waste through evaporation and other treatment methods. This also increases the contaminant concentration. Pennsylvania used to permit “treatment” of wastewater at sewage treatment facilities, before being forced to concede that the process was completely ineffective, and resulted in contaminating streams and rivers throughout the Commonwealth.

In many states, much of this waste is disposed of in facilities known as salt water disposal (SWD) wells, a specific type of injection well. These waste facilities fall under the auspices of the US Environmental Protection Agency’s Underground Injection Control (UIC) program. Such wells are co-managed with states’ oil and gas regulatory agencies, although the specifics vary by state.

These photos show SWD wells in other states, but what about in Pennsylvania?

The oil and gas industry in Pennsylvania has not used SWD wells as a primary disposal method, as the state’s geology has been considered unsuitable for this process.  For example, on page 67 of this 2009 industry report, the authors saw treatment of flowback fluid at municipal facilities as a viable option (before the process was  banned in 2011), but underground injection as less likely (emphasis added):

The disposal of flowback and produced water is an evolving process in the Appalachians. The volumes of water that are being produced as flowback water are likely to require a number of options for disposal that may include municipal or industrial water treatment facilities (primarily in Pennsylvania), Class II injection wells [SWDs], and on-site recycling for use in subsequent fracturing jobs. In most shale gas plays, underground injection has historically been preferred. In the Marcellus play, this option is expected to be limited, as there are few areas where suitable injection zones are available.

The ban on surface “treatment” being discharged into Pennsylvania waters has increased the pressure for finding new solutions for brine disposal.  This is compounded by the fact that the per-well volume of fluid injected into shale gas wells in the region has nearly tripled in that time period. Much of what is injected comes back up to the surface and is added to the liquid waste stream.

Chemically-similar brine from conventional wells has been spread on roadways for dust suppression. This practice was originally considered a “beneficial use” of the waste product, but the Pennsylvania Department of Environmental Protection (DEP) halted that practice in May 2018.

None of these waste management decisions make the geology in Pennsylvania suddenly suitable for underground injection, however, they do increase the pressure on the state to find a disposal solution.

Concerns with SWD wells

There are numerous concerns with salt water disposal wells.  In October 2018, the DEP held a hearing in Plum Borough, on the eastern edge of Allegheny County, where there is a proposal to convert the Sedat 3A conventional well to an injection well. Some of the concerns raised by residents include:

  • Fluid and/or gas migration- There are numerous routes for fluids and gas to migrate from the injection formation to drinking water aquifers or even surface water.  Potential conduits include coal mines, abandoned gas wells, water wells, and naturally occurring fissures in crumbling sedimentary formations.
  • Induced seismicity- SWD wells have been linked to increased earthquake activity, either by lubricating or putting pressure on old faults that had been dormant. Earthquakes can occur miles away from the injection location, and in sedimentary formations, not just igneous basement rock.
  • Noise, diesel pollution, loss of privacy, and road degradation caused by a constant stream of industrial waste haulers to the well location.
  • Complicating existing issues-  Plum Borough and surrounding communities are heavily undermined, and in fact the well bore goes right through the Renton Coal Mine (another part of which has been on fire for decades).  Mine subsidence is already a widespread issue in the region, and many fear that even small seismic events could exacerbate this.
  • Possibility of surface spill-  Oil and gas is, sadly, a sloppy industry, with unconventional operations having accumulated more than 13,000 violations in Pennsylvania since 2008.  If a major spill were to happen at this location, there is the possibility of release into Pucketa Creek, which drains into the Allegheny River, the source of drinking water for multiple communities.
  • Radioactivity and other contaminants- Flowback fluids are often highly radioactive, contain heavy metals, and other contaminants that are challenging to effectively clean.  The migration of radon gas into homes above the injection formation is also a possibility.

The current state of SWDs in Pennsylvania

Pennsylvania has numerous data sources for oil and gas, but they are not always in agreement. To account for this, we have mapped SWDs (and a five mile buffer around them) from two different data sources in the map below. The first source is a subset of SWD wells from a larger dataset of oil and gas locations from the DEP’s mapping website. The second source is from a Waste Facility Report, represented in pink triangles that are offset at an angle to allow users to see both datasets simultaneously in instances where they overlap.


Map of existing, proposed, and plugged salt water disposal (SWD) injection wells in Pennsylvania.

 View map fullscreen How FracTracker maps work

According to the first data set of DEP’s oil and gas locations, Pennsylvania contains 13 SWDs with an active status, one SWD with a regulatory inactive status, and eight that are plugged. The Waste Facility Report shows 10 SWD wells total, including one well that was left out of the other data set in Annin Township, McKean County.

It is worth noting that Pennsylvania’s definition for an “active” well status is confusing, to put it charitably. It does not mean that a well is currently in operation, nor does it even mean that it is currently permitted for the activity, whether that is waste disposal or gas production, or some other function. An active status means that the well has been proposed for a given use, and the well hasn’t been plugged, or assigned some other status.

The Sedat 3A well in Plum, for example, has an active status, although the DEP has not yet granted it a permit to operate as a SWD well. Another  status type is “regulatory inactive,” which is given to a well that hasn’t been used for its stated purpose in 12 months, but may potentially have some future utility.

Karst, coal mines, and streams

While there are numerous factors worthy of consideration when siting SWD wells, this map focuses on three: the proximity of karst formations, coal mines and nearby streams that the state designates as either high quality or exceptional value.

Karst formations are unstable soluble rock formations like limestone deposits which are likely to contain numerous subsurface voids. These voids are concerning in this context. For one reason, there’s the possibility of contaminated fluids and gasses migrating into underground freshwater aquifers. Also, the voids are inherently structurally unstable, which could compound the impacts of artificially-induced seismic activity caused by fluid injections in the well.

Our analysis found over 78,000 acres (123 square miles) of karst geology within five miles of current, proposed, or plugged SWD wells in Pennsylvania.

Coal mines, while a very different sedimentary formation, have similar concerns because of subsurface voids. Mine subsidence is already a widespread problem in many of the communities surrounding SWD well sites.  Pennsylvania has several available data sets, including active underground mine permits and digitized mined areas, which are used in this map.  Active mine permits show current permitted operations, while digitized mine areas offer a highly detailed look at existing mines, including abandoned mines, although the layer is not complete for all regions of the state.

In Pennsylvania, there are 56,542 acres (88 square miles) of active mines within five miles of SWD wells. Our analysis found 97,902 acres (153 square miles) of digitized mined areas within five miles of SWD wells.  Combined, there are 139,840 acres (219 square miles) of existing and permitted mines within the 5 mile buffer zone around SWDs in Pennsylvania.

Streams with the designation “high quality” and “exceptional value” are the best streams Pennsylvania has to offer, in terms of recreation, fishing, and biological diversity. In this analysis, we have identified such streams within a five mile radius of SWD wells, irrespective of the given watershed of the well location.

While the rolling topography of Western Pennsylvania sheds rainwater in a complicated network of drainages, groundwater is not subject to that particular geography. Furthermore, groundwater regularly interacts with surface water through water wells, abandoned O&G wells, and natural seeps and springs. Therefore, it is possible for SWDs to contaminate these treasured streams, even if they are not located within the same watershed.

Altogether, there are 716 miles of high quality streams and 110 miles of exceptional value streams within 5 miles of the SWDs in this analysis.

Conclusion

For decades, geologists have concluded that the subsurface strata in Pennsylvania were not suitable for oil and gas liquid waste disposal in underground injection wells.  The fact that vast quantities of this waste are now being produced in Pennsylvania has not suddenly made it a suitable location for the practice.  If anything, additional shallow and deep wells have further fractured the sedimentary strata, thereby increasing the risk of contamination.

The only factor that has changed is the volume of waste being produced in the region. SWD wells in nearby Ohio and West Virginia have capacity issues from their own production wells, and it is not clear that the geologic formations across the border are that much better than in Pennsylvania. But as new wells are drilled and volumes of hydraulic fracturing fluid continue to spiral into the tens of millions of gallons per well, the pressure to open new SWD wells in the state will only increase.

Perhaps because of these pressures, DEP has become quite bullish on the technology:

Several successful disposal wells are operating in Pennsylvania and options for more sites are always being considered. The history of underground disposal shows that it is a practical, safe and effective method for disposing of fluids from oil and gas production.
Up against this attitude, residents are facing an uphill battle trying to prevent harm to their health and property from these industrial facilities in their communities.  Municipalities that have attempted to stand up for their residents have been sued by DEP to allow for these injection wells.  The Department’s actions, which put the interests of industry above the health of residents and the environment, is directly at odds with the agency’s mission statement:
The Department of Environmental Protection’s mission is to protect Pennsylvania’s air, land and water from pollution and to provide for the health and safety of its citizens through a cleaner environment. We will work as partners with individuals, organizations, governments and businesses to prevent pollution and restore our natural resources.
It’s time for DEP to live up to its promises.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

FracTracker Alliance Logo with Map

Seeking new Manager of Communications and Development – based in Pittsburgh or Harrisburg, PA

Job Announcement and Online Application:
Manager of Communications and Development, FracTracker Alliance

Job Description

PURPOSE: Manage all external communications activities of the organization; Cultivate and maintain strategic relationships with partner organizations and institutions; Promote and coordinate college internship program; Manage cyber security activities; In coordination with Executive Director, execute organizational fundraising activities including proposal development, prospect ID, annual giving campaigns, major gift solicitation, events planning, donor relations, and applicable database management.

DUTIES:

  • Oversee FracTracker website. Write/edit articles on key issues and findings related to oil and gas development concerns and coordinate maintenance of other content areas (photos, resources, projects, etc.)
  • Work with Manager of Data and Technology, other FracTracker staff, and consultants to evaluate and improve the aesthetics, features, and functionality of FracTracker’s website and related technology (e.g. phone app)
  • Oversee survey development regarding user feedback on the FracTracker website and related technologies (as needed)
  • Periodically update online and printed training tools for utilization of the website, web maps, and mobile app
  • Proactively engage news media on oil and gas issues and FracTracker’s work through interviews, calls, meetings, alerts, and other techniques. Serve as initial contact for major media inquiries
  • Work with Manager of Operations to maintain and update FracTracker exhibits, publications, and marketing materials (as needed)
  • Create and disseminate the organization’s annual report each spring
  • Develop timely FracTracker e-newsletters and communications with our constituencies (with support from Community Outreach and Communications Specialist). Oversee social media channels.
  • Manage implementation of the organization’s communications plan; regularly propose, integrate, and evaluate new communications strategies/ideas; and, help Executive Director assure staff compliance with communications response protocols
  • Supervise and inform activities of Community Outreach and Communications Specialist, who will strategically engage community partners and support communication activities of the organization
  • Periodically represent FracTracker at important conferences, meetings, and events regionally and nationally
  • As opportunities arise, author/co-author scientific papers and white papers elevating the work of FracTracker – translate FracTracker’s work into policy-relevant content
  • As opportunities arise, write articles for popular media on the work and successes of FracTracker
  • Manage FracTracker’s internship program by organizing and publicizing internship opportunities across the U.S.; overseeing hiring of the interns working with field staff and the Manager of Operations
  • Assess cyber threats and vulnerabilities to FracTracker’s website. Initiate and manage protocols to protect the website and staff devices from cyber threats, including routine data backups
  • Oversee and orchestrate an annual giving campaign developed in consultation with the Executive Director and board
  • Populate and maintain donor and fundraising database (with support from Manager of Operations)
  • Identify and cultivate new prospective donors and manage relationships with existing donors
  • Assist Executive Director with proposal development and engagement of potential funders and regional and national partners for program collaboration

PREFERRED SKILLS: Writing, web design, media relations, strategic communication, public speaking, research, citizen science and/or data collection, data management, social media, digital marketing, teamwork, supervisory, interpersonal, fundraising, and knowledge of environmental, public health, economic, agricultural, or other issues of relevance to understanding and addressing the implications of oil and gas extraction, petrochemicals, and climate change

MINIMUM EDUCATION/QUALIFICATIONS: Bachelor’s degree in communications, journalism, or related field preferred, but candidates with degrees in natural or physical sciences, environmental studies, citizen science, public health, public policy or other relevant fields will be considered. Master’s degree preferred but not required. Five years of work experience exercising the skills listed above; Ability and willingness to travel; Valid driver’s license.

LOCATION: Pittsburgh, PA or Harrisburg, PA

STATUS: Full time (37.5 hours per week) – exempt

CANDIDATES ARE ASKED TO SUBMIT SALARY REQUIREMENTS IN THEIR COVER LETTER


Application Process

Manager of Communications and Development candidates can apply online below. Clarifying questions about the application process can be submitted to Brook Lenker via email: lenker@fractracker.org.

Application period closes March 22, 2019 – 5:00 PM EST.

The FracTracker Alliance is an equal opportunity employer. All decisions regarding recruiting, hiring, promotion, assignment, training, termination, and other terms and conditions of employment are made without unlawful discrimination on the basis of race, color, national origin, ancestry, sex, sexual orientation, gender identity or expression, religion, age, pregnancy, disability, work-related injury, covered veteran status, political ideology, genetic information, marital status, or any other factor that the law protects from employment discrimination.


Online Application

Pennsylvania Drilling Trends in 2018

With the new year underway, it’s an opportune moment to reflect on the state of unconventional oil and gas extraction in Pennsylvania and examine a few of the drilling trends. A logical place to start is looking at the new wells drilled in 2018.

As always, but perhaps even more so than in previous years, unconventional drilling in Pennsylvania is a tale of two shale plays, with hotspots in the southwestern and northeastern corners of the state. The northeastern hotspot seems to be extending westward, including 25 new wells in Jones Township in Elk County (an area shown in dark red near the “St Marys” label on the map). In the southwestern hotspot, the industry continues to encircle Allegheny County, closing in on the City of Pittsburgh like a constrictor.

Screen shot showing spud report for Indiana Township, Allegheny County from 1/1/2017 through 1/4/2019. We suspect these spud dates of 11/29/17 and 11/30/17 are incorrect.

Screen shot showing spud report for Indiana Township, Allegheny County from 1/1/2017 through 1/4/2019. We suspect these spud dates of 11/29/17 and 11/30/17 are incorrect.

Data error? As Pittsburgh-area residents reflect on the past year, some of them must be wondering why a new well pad in Indiana Township, just northeast of the city isn’t shown on the map above. The answer is that the data the Department of Environmental Protection (DEP) has for these wells indicate they were drilled November 29-3o, 2017, although we believe this to be incorrect. FracTracker obtained the data from the Spud Report on January 2, 2019, which indicates seven wells spudded in that two day span on the “Miller Jr. 10602” well pad. This activity drew considerable opposition from families in the Fox Chapel School district in May of 2018, and was therefore widely reported on by the media. An article published on WESA indicates an expected drill date of July 2018, for example.

It turns out the new year is also a good time to remember that our understanding of the oil and gas industry around us is shaped, molded, and limited by the availability and quality of the data. We brought the Indiana Township data error to the attention of DEP, which only confirmed that the operator (Range Resources) entered the spud dates into the DEP’s online system. Perhaps these well were drilled in November of 2018 not 2017? There is even a possibility these wells have yet to be drilled.

Here are a few more dissections of the data, such as it is:

Graph of unconventional (fracking) wells drilled in PA, YTD - Drilling trends

Figure 1: Unconventional wells drilled in PA by year: 2005 to 2018

Wells Drilled Over Time

Barring more widespread data issues, the status of a handful of wells in Indiana Township does not have much of an impact on the overall trend of drilling in the state. There were 779 wells on the report, representing just under 40% of the total from the peak year of 2011, when industry drilled 1,958 wells. The year 2019 was the fourth year in a row where the industry failed to drill 1,000 wells, averaging 719 per year over that span. In contrast, the five years between 2010 and 2014 saw an average of 1,497 wells per year, more than twice the more recent average. As mentioned in our Hazy Future report, projections based on very aggressive drilling patterns are already proving to be out of phase with reality, although petrochemical commodity markets might change drastically in the coming decades.

How long before wells are plugged?

We also like to periodically check to see how long these wells stay in service. In Pennsylvania, there are two relevant well statuses worth following: plugged and regulatory inactive. While there are a number of conditions that characterize regulatory inactive wells, they are essentially drilled wells that are not currently in production, but may have “future utility.” Therefore, the wells are not required to be permanently plugged at this time.

Unconventional wells drilled since 2005 in PA - Drilling trends

Figure 2: This chart shows the percentage of unconventional wells drilled since 2005 with a plugged or regulatory inactive status as of December 31, 2018.

In order to understand some of the finer points, it’s best to use Figure 1 (above) in conjunction with Figure 2. We can see that most of the wells drilled in the initial years of the Marcellus boom have already been plugged, although Figure 1 shows us that the sample size is fairly low for these years. In 2005, for example, 7 of the 9 (78%) unconventional wells drilled in the state that year are already plugged. The following year, 24 of the 37 (65%) wells drilled are now plugged, and an additional 4 (11%) wells have a regulatory inactive status as of the end of 2018. The following year, the combined plugged and inactive wells account for just over 50% of the 113 wells drilled that year, and this trend continues along a fairly predictable curve. An exception is the noticeable bump around the most active drilling years of 2010 and 2011, where there are slightly more wells with a plugged or inactive status than might be expected. It is interesting to note that even the most recent wells are not immune to being plugged, including 8 plugged wells and 4 inactive wells drilled in 2018 that were not able to get past their very first year in production.

Overall, of the 11,675 drilled wells accounted for on this graphic, 851 (7%) are plugged already, with an additional 572 (5%) of wells with an inactive status.  Unconventional wells that are 11 years old have a roughly 50% chance of being plugged or inactive, and we would therefore expect to see the number of these wells skyrocket in the coming years before leveling off, roughly mirroring the drilling boom and subsequent slowdown of Marcellus Shale extraction in Pennsylvania.

Conclusions

Many factors contribute to fluctuations in drilling trends for the Marcellus Shale and other unconventional wells in Pennsylvania. Very cold winters result in high consumption by residential and commercial users. New gas-fired power plants can increase the demand for additional drilling. Recessions and economic conditions are known to reduce the demand for energy as well, and drillers’ heavy debt burdens can slow down operations appreciably. Additionally, other fossil fuel and renewable energy sources compete with one another, altering the market conditions even further. And finally, every oil and gas play eventually reaches a point where the expected results from new wells are not worth the money required to get the hydrocarbons to the surface, and unconventional wells are much more expensive to develop than more traditional operations.

Because of all of these variables, month to month or even year to year fluctuations are not necessarily that telling.  On the other hand, a four-year period where drilling is roughly half of previous extraction is significant, and can’t be easily dismissed as a blip in the data.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Re: Falcon ethane pipeline project

Falcon Pipeline Moves Forward Despite Unresolved Concerns

Pittsburgh, PA – Yesterday, the Pennsylvania Department of Environmental Protection (DEP) announced their decision to issue a permit for the construction of Shell’s Falcon ethane pipeline project in southwest PA. FracTracker Alliance is extremely disappointed that DEP is allowing this project to proceed despite heavy opposition from the public and unaddressed concerns for the safety and well-being of nearby residents and the surrounding environment.

The past year has seen countless issues from the construction of new pipelines in the Commonwealth – from hundreds of “inadvertent returns,” (spills of bentonite drilling mud) along the path of the Mariner East II project to the catastrophic explosion of the week-old Revolution Pipeline in Beaver County. These reoccurring and serious incidents make it clear that oil and gas midstream companies are rushing to put infrastructure in place, and DEP and other regulatory agencies have been failing in their mission to adequately supervise the process.

According to data from the US Pipeline and Hazardous Materials Safety Administration, there were 108 pipeline incidents in Pennsylvania between January 2010 and mid-July 2018, resulting in 8 fatalities, 15 injuries, requiring over 1,100 people to be evacuated from their homes, and causing more than $66 million in property damage. This track record, which does not include the Revolution Pipeline explosion in September of 2018, is frankly unacceptable.

Certainly, the Commonwealth has invested heavily in the Shell Ethane Cracker facility, offering steep tax subsidies and even paying the global petrochemical giant $2.10 for every barrel of ethane it consumes from Pennsylvania wells, equivalent to $1.6 billion over the next 25 years. It appears to FracTracker that these business arrangements have made the continued extraction and exploitation of hydrocarbons the priority for DEP, not protecting the environment and health and safety of Pennsylvanians, as the mission of the Department suggests is their focus. DEP’s decision also traces an unfortunate pattern of opaqueness and poor timing by announcing unpopular decisions right before the holidays.

Fundamentally, oil and gas companies like Shell exist to make profits, and will therefore make decisions to maximize earnings and limit their costs, if left to their own devices. This approach is often directly at odds with public safety, so Pennsylvania entrusts DEP to oversee the operations. FracTracker feels that with their decision to move forward with the project on December 20, 2018, DEP brushed over dozens of substantial concerns regarding the Falcon ethane pipeline project, and therefore failed in this mission. We remain unconvinced that the “appropriate construction techniques and special conditions” required by DEP will adequately protect the environment and health and safety of residents along the Falcon pipeline route.

Dec. 21st Update: After this article was written, FracTracker learned that Ohio’s EPA issued an air quality permit for the cracker plant in Belmont County, Ohio on December 21st. The short public comment period and the rush to issue permits again illustrates that significant public health and environmental concerns are given minimal importance versus corporate wishes and political expediency. The regulatory paradigm is broken. The public has been ill served by the agencies entrusted to safeguard their interests. A collective regional voice should be raised in protest.

Brook LenkerExecutive Director, FracTracker Alliance

About FracTracker Alliance

Started in 2010 as a southwestern Pennsylvania area website, FracTracker Alliance is now a national organization with regional offices across the United States in Pennsylvania, Washington DC, New York, Ohio, and California. The organization’s mission is to study, map, and communicate the risks of oil and gas development to protect our planet and support the renewable energy transformation. Its goal is to support advocacy groups at the local, regional and national level, informing their actions to positively shape our nation’s energy future. www.fractracker.org


Learn more about FracTracker’s coverage of the Falcon ethane pipeline project by exploring the posts below:

Appalachia storage hub prospects map by FracTracker

Storing Natural Gas Liquids in Appalachia

Last month, the Department of Energy (DOE) submitted a report titled Ethane Storage and Distribution Hub in the United States to Congress. The report sums up several other recent geologic studies and economic analyses that evaluate the potential to create a large petrochemical hub in southwest Pennsylvania, Ohio, West Virginia, and northeastern Kentucky.

Most people call this region Appalachia because of the mountains, or the Ohio River Valley because of the namesake river. The petrochemical industry looks deeper: they’ve branded it Shale Crescent USA, after the shale gas thousands of feet underground. This article summarizes recent developments on storing natural gas liquids, including ethane, in this region – whatever you prefer to call it.

Background

The United States currently produces more natural gas than any other country in the world, with much of the fracked gas coming from the Marcellus and Utica shales in Appalachia. The DOE report predicts that production in this region will continue growing from an estimated at 8.19 trillion cubic feet (Tcf) in 2017, to 13.55 Tcf in 2025 and 19.5 Tcf in 2050.

Natural Gas Production Estimates:

8.19 Tcf in 2017
13.55 Tcf in 2025
19.5 Tcf in 2050

In addition to oil and gas, fracking produces natural gas liquids (NGLs), such as ethane, propane, and butane. NGLs are a key component of the petrochemical industry, which takes these resources and converts them into plastics and resins. As industry extracts more natural gas, it will also be left with more NGLs to manage.

Hoping to profit off NGLs, the oil and gas industry is investing in petrochemical production. In the Appalachian basin, the DOE predicts that production of ethylene from ethane will reach 640,000 barrels a day by 2025 (this is 20 times the amount the region produced in 2013). The Gulf Coast of the U.S., as well as countries in Asia and the Middle East, are also growing their production capacities. Globally, ethylene production is projected to grow 31% from 2017 to 2025.

The rise of the petrochemical industry is coming at a point when there’s an increasing global awareness of the disaster that is plastic pollution. As much as 12.7 million tons of plastic waste goes into the ocean each year, affecting over 700 species of marine animals. On land, plastic waste is often shipped to less developed nations, where it ends up polluting poor communities and contaminating their drinking water and air.

Nevertheless, politicians in PA, OH, and WV are working hard to attract petrochemical build-out in Appalachia. The region already houses much of the infrastructure needed for a petrochemical hub, such as fracked wells that pump out NGLs and processing plants to separate these liquids from the rest of the natural gas stream. One thing it’s missing, however, is significant capacity to store natural gas liquids – particularly ethane.

Why does industry need storage?

Ethane storage offers several benefits to the petrochemical industry. For one, it would serve as a steady supply of ethane for plants like ethane crackers, which “crack” ethane into ethylene to make polyethylene plastic. With this constant supply (transported to crackers via pipeline), plants can operate 24 hours a day, year round, and avoid using energy to shutdown and restart. Storage also allows industry to adapt to fluctuations in demand. If demand decreases, ethane can be set aside instead of being burned off when a natural gas stream is processed.

Another argument for expanding petrochemical activity in Appalachia is to diversify the industry’s geography. The current petrochemical hub in Texas and Louisiana (where over 95% of the country’s ethylene production takes place) is subject to extreme weather events. In 2017, Hurricane Harvey caused over half of the nation’s polyethylene production capacity to shut down. The report mentions “extreme weather events” multiple times as justification for building a petrochemical hub in Appalachia. This stance strongly suggests that the DOE is preparing for increased hurricanes and flooding from climate change, although this is never explicitly stated. Unsurprisingly, the industry’s role in causing climate change is left out from the report as well.

What does storage look like?

While the term ‘natural gas liquid’ may seem like an oxymoron, it refers to the different forms the substances take depending on temperature and pressure. At normal conditions, NGLs are a gas, but when pressurized or exposed to extremely cold temperatures,  they act as a liquid. NGLs occupy significantly less space as a liquid, and are therefore moved and stored as a pressurized or refrigerated liquid.

Storage can be in above ground tanks, but is often underground in gas fields or underground caverns. NGLs are highly volatile, and storing them above ground puts workers and surrounding communities at risk. For example – last week, an above ground storage tank exploded at a natural gas processing plant in Washington County, PA, sending four people to the hospital. While underground storage is often perceived as “safer,” it still poses significant risks, particularly in a geography like Appalachia full of wells, coal mines, and pipelines. This underground infrastructure can cause NGLs to leak during storage or the land above them to collapse.

A study out of West Virginia University, titled “A Geologic Study to Determine the Potential to Create an Appalachian Storage Hub For Natural Gas Liquids,” identified three different types of storage opportunities along the Ohio and Kanawha river valleys:

Underground storage options

  1. Mined-rock cavern: Companies can mine caverns in formations of limestone, dolomite, or sandstone. The formation must be at least 40 feet thick to hold NGLs. This study focused on formations of the Greenbrier Limestone, which occurs throughout southwestern Pennsylvania, West Virginia, and Kentucky.
  2. Salt cavern: Developing salt caverns involves injecting water underground to create a void, and then pumping NGLs into the cavern. Suitable salt caverns have “walls” at least 100 feet thick above and below the cavern. The study recommended salt caverns 1,500 to 3,000 feet deep, but considered those as deep as 6,700 feet.
  3. Gas field: NGLs can also be stored in natural gas fields or depleted gas fields in underground sandstone reservoirs. Suitable gas fields are 2,000 feet deep or more according to the WVU study.

Where could storage sites be located?

The West Virginia University study identified and ranked thousands of gas fields, several salt caverns, and many regions in the Greenbrier Limestone that could serve as NGL storage. Most of the top-ranked opportunities are in West Virginia, near the state’s borders with Ohio and Pennsylvania, and several cross beneath the Ohio or Kanawha rivers. The researchers conclude with three “prospects,” which are circled in Figure 1.

A map of storing natural gas liquids opportunities in the Ohio River Valley

Figure 1. NGL storage opportunities identified by the Appalachian Oil and Natural Gas Consortium at West Virginia University

The table below lists the specific storage opportunities in each prospect, as well as the available data on depth, thickness, and acreage of the formations. Also listed are the counties that the storage facility would cross into.

Name Type Depth (feet) Thickness (feet) Counties Land Size (acres)
Salina F4 Salt cavern Salt cavern >100 to 150 Primarily Columbiana, OH, also Hancock, WV & Beaver, PA 83,775
Salina F4 salt cavern Salt cavern 100 to 150 Primarily Jefferson, OH, also Brooke & Hancock WV, & Washington, PA 129,017
Ravenna-Best Consolidated Field Depleted gas field 4,107 to 6,497 25 to 156 Mahoning, OH 69,000
No specific field was ranked Gas field in Oriskany sandstone 3,000 to 7,000 0 to 70+ Throughout the prospect

Existing NGL Storage

Storage in the United States

Currently, the U.S. has two major NGL storage hubs (both in salt caverns): One is in Mont Belvieu, Texas and the other in Conway, Kansas. These facilities are strategically located near the petrochemical industry’s hub along the Gulf Coast. There is also underground storage in Sarnia, Ontario.

Industry in Appalachia is connected to these storage facilities via pipelines, including Sunoco’s Mariner West that transports ethane to Sarnia, and the Appalachia-Texas-Express (ATEX) pipeline that takes ethane to Mont Belvieu. However, as suggested above, NGL storage in Appalachia is also under development.

Appalachia Storage & Trading Hub

Appalachia Development Group LLC is heading the development of the Appalachia Storage & Trading Hub initiative. The company has not announced the specific location for underground storage, but has been working hard to secure the funds  for this development.

In September of 2017, Appalachia Development Group submitted part 1 of a 2-part application for a $1.9 billion loan to the US DOE Loan Program Office. The DOE approved the application the following January, inviting the company to submit the second part, which is currently pending. This second part goes through the DOE’s Title XVII innovative clean energy projects loan program.

According to the DOE, this program “provides loan guarantees to accelerate the deployment of innovative clean energy technology.” Paradoxically, this means the DOE may give clean energy funds to the petrochemical industry, which is fueled by fossil fuels and does not provide energy but rather plastic and resins.

Steven Hedrick, the CEO of Appalachia Development Group, was part of a West Virginia trade delegation that traveled to China in 2017 to meet with China’s largest energy company. This meeting, which included President Trump and China’s President Xi Jinping, resulted in China Energy agreeing to invest $83.7 billion to support natural gas and petrochemical development in West Virginia. (Of note: This agreement has faced uncertainty following Trump’s tariffs on Chinese goods). West Virginia Governor Jim Justice later criticized Hedrick’s involvement in the meeting, where he promoted the interests of his private company.

Mountaineer NGL Storage Project

Another company, Energy Storage Ventures LLC, has plans to construct NGL storage near Clarington, Ohio. This facility would be on land formerly belonging to Quarto Mining Company’s Powhatan Mine No. 4. Called “Mountaineer NGL Storage,” the project would develop salt caverns to store propane, ethane, and butane. Each cavern could store 500,000 barrels (21 million gallons) of NGLs.

The video below, made by the Energy Storage Ventures, describes the process of developing salt caverns for storage.

The Mountaineer NGL Storage Project location is about 12 miles south of the PTTGC ethane cracker (if built), in Dilles Bottom Ohio. It’s also roughly 60 miles south of the Shell ethane cracker (under construction) in Potter Township, PA. If developed, the project could supply these plants with ethane and allow them to continuously operate. According to Energy Storage Ventures President, David Hooker, the project would also trigger $500 million in new pipelines in the region and $1 billion in fractionation facilities to separate NGLs.

Energy Storage Ventures wants to build three pipelines beneath the Ohio River. Two pipelines (one for ethane and one for propane and butane) would deliver NGLs to the storage site from Blue Racer Natrium, a fractionation plant that separates dry natural gas from NGLs. A third pipeline would take salt brine water from the caverns to the Marshall County chlorine plant (currently owned by Westlake Chemical Corp). These facilities, as well as the locations of the two ethane crackers storage could serve, are in the map below. This map also includes the potential storage opportunities the researchers at West Virginia University identified.

View map full screen | How FracTracker maps work

Referring to concerns about building pipelines and caverns near the Ohio River, a drinking water source for 5 million people, the company’s president David Hooker stated, “This is not rocket science. These things have operated safely for years… Salt, at depth, is impermeable. You won’t see any migration out of the salt.”

This video is a rendering of what the 200-acre site will look like, including the salt water impoundment structure (capable of holding 3.25 million barrels), and the infrastructure needed to deliver products and equipment by rail and truck:

The company has stated that it owns both the land and mineral rights it needs to develop the caverns, but the project has also faced delays.

Where is this plastic going?

One common argument for a petrochemical hub in Appalachia is the region’s proximity to the downstream sector of petrochemical industry. Manufacturers such as PPG Industries, Dow Chemical Inc., and BASF are all based in the area and could make use of the feedstock from an Appalachian hub.

However, the report doesn’t make it clear where the plastic and resin end products will land. It does state that the demand in the United States isn’t enough to swallow up two major petrochemical hubs worth of plastic.

Export markets

The DOE report states that, “the development of new petrochemical capacity in Appalachia is not necessarily in conflict with Gulf Coast expansion.” Since the Gulf Coast already has the infrastructure for export, it could focus on international markets while Appalachia meets domestic demand. Alternatively, the Appalachian hub could serve European destinations while the Gulf Coast hub delivers to Pacific Basin and South American destinations. Plastic consumption is highly correlated with population, so countries with large, growing populations such as India and China are likely markets.

It’s important to note that the U.S. isn’t the only country increasing its production of petrochemical derivatives, and as the report notes, exports from the US “may face a challenge from global capacity surplus.” Figure 2 shows that global production of ethylene is expected to surpass global consumption, shown in Figure 3. The graph of consumption likely ignores the impact of plastic-reducing policies that hundreds of countries and cities are implementing. As such, it may be an over-estimation.

Historical and Projected Ethylene Production Capacity by Global Area

Figure 2. Historical and future ethylene production by global region. Source

Graph of ethylene consumption by global area.

Figure 3. Ethylene consumption by global region. Source

In the end, it appears that the industry’s plan is to build first, and worry about markets later, hoping that a growing supply of affordable plastic will increase consumption.

Perhaps the reason industry is so eager to forge a market is because oil and gas is struggling with a lot of debt. A study out of the Sightline Institute found that as of the first half of 2018, “US fracking-focused oil and gas companies continued their eight-year cash flow losing streak.”  The Center for International Environmental Law found that petrochemicals generally have a larger profit margin than oil and gas: “In 2015, ExxonMobil’s Chemicals segment accounted for roughly 10% of its revenues but more than 25% of its overall profits.”

Plastic is one way to subsidize this dying industry…

Beyond Storing Natural Gas Liquids

The motive behind developing storage is to catalyze and support a major industry. The DOE report states that the new infrastructure required “would include gathering lines, processing plants, fractionation facilities, NGLs storage facilities, ethane crackers, and then…plants for polyethylene, ethylene dichloride, ethylene oxide, and other infrastructure.” A hub would require more fracking and wastewater injection wells, cause even more heavy truck traffic that adds stress to roadways, and require additional power plant capacity to serve its electricity demand.

In other words, an Appalachia petrochemical hub would profoundly impact the region. The report contains an in-depth analysis of the economic impacts, but fails to mention any environmental concerns, social impacts on communities, or health effects. The other major studies on this buildout,  mentioned above, follow a similar pattern.

A quick look at industry along the Gulf Coast tells you that environmental, social, and health concerns are very real and produce their own economic debts. The petrochemical industry has created a “cancer alley” in Texas and Louisiana, disproportionately impacting low-income and minority communities. Yet, industry is preparing another hub without a single comprehensive environmental impact assessment or health assessment for the region. As each pipeline, fracked well, and plant is permitted separately, we can’t properly assess the cumulative negative impacts this development will have on our waterways, forests, soil, or air quality. Therefore, we also won’t know how it will affect our health.

Looking into the future

The report analyzes the industry through 2050. It states that NGL output in Appalachia:

… will continue to grow throughout the forecast period. As natural gas production gradually migrates away from liquids-rich gas areas, which are expected to slowly deplete, to dryer areas, the rate of growth in NGPL production will slow relative to the rate of natural gas production growth.

In 31 years, the kids growing up in Appalachia right now could be left with brownfields, dried-up wells, and abandoned ethane crackers. But it doesn’t have to be this way. Last year, the DOE reported that there are more jobs in clean energy, energy efficiency, and alternative vehicles than in fossil fuels. By using funds such as the DOE’s Title XVII innovative clean energy loan – for actual clean energy – we can bring economic development to the region that will be relevant past 2050 and that won’t sacrifice our health and natural resources for short-term private gains.

By Erica Jackson, Community Outreach and Communications Specialist

Map of pipeline incidents across the US

Pipeline Incidents Continue to Impact Residents

Pipelines play a major role in the oil and gas extraction industry, allowing for the transport of hydrocarbons from well sites to a variety of infrastructure, including processing plants, petrochemical facilities, power generation plants, and ultimately consumers. There are more than 2.7 million miles of natural gas and hazardous liquid pipelines in the United States, or more than 11 times the distance from Earth to the moon.

With all of this infrastructure in place, pipelines are inevitably routed close to homes, schools, and other culturally or ecologically important locations. But how safe are pipelines, really? While they are typically buried underground and out of sight, many residents are concerned about the constant passage of volatile materials through these pipes in close proximity to these areas, with persistent but often unstated possibility that something might go wrong some day.

Safety talking points

In an attempt to assuage these fears, industry representatives and regulators tend to throw around variants of the word “safe” quite a bit:

Pipelines are the safest and most reliable means of transporting the nation’s energy products.
— Keith Coyle, Marcellus Shale Coalition

Although pipelines exist in all fifty states, most of us are unaware that this vast network even exists. This is due to the strong safety record of pipelines and the fact that most of them are located underground. Installing pipelines underground protects them from damage and helps protect our communities as well.
— Pipeline and Hazardous Materials Safety Administration (PHMSA)

Pipelines are an extremely safe way to transport energy across the country.
Pipeline 101

Knowing how important pipelines are to everyday living is a big reason why we as pipeline operators strive to keep them safe. Pipelines themselves are one of the safest ways to transport energy with a barrel of crude oil or petroleum product reaching its destination safely by pipeline 99.999% of the time.
American Petroleum Institute

But are pipelines really safe?

Given these talking points, the general public can be excused for being under the impression that pipelines are no big deal. However, PHMSA keeps records on pipeline incidents in the US, and the cumulative impact of these events is staggering. These incidents are broken into three separate reports:

  1. Gas Distribution (lines that take gas to residents and other consumers),
  2. Gas Transmission & Gathering (collectively bringing gas from well sites to processing facilities and distant markets), and
  3. Hazardous Liquids (including crude oil, refined petroleum products, and natural gas liquids).

Below in Table 1 is a summary of pipeline incident data from 2010 through mid-November of this year. Of note: Some details from recent events are still pending, and are therefore not yet reflected in these reports.

Table 1: Summary of pipeline incidents from 1/1/2010 through 11/14/2018

Report Incidents Injuries Fatalities Evacuees Fires Explosions Damages ($)
Gas Distribution 934 473 92 18,467 576 226 381,705,567
Gas Transmission & Gathering 1,069 99 24 8,614 121 51 1,107,988,837
Hazardous Liquids 3,509 24 10 2,471 111 14 2,606,014,109
Totals 5,512 596 126 29,552 808 291 4,095,708,513

Based on this data, on average each day in the US 1.7 pipeline incidents are reported (a number in line with our previous analyses), requiring 9 people to be evacuated, and causing almost $1.3 million in property damage. A pipeline catches fire every 4 days and results in an explosion every 11 days. These incidents result in an injury every 5 days, on average, and a fatality every 26 days.

Data shortcomings

While the PHMSA datasets are extremely thorough, they do have some limitations. Unfortunately, in some cases, these limitations tend to minimize our understanding of the true impacts. A notable recent example is a series of explosions and fires on September 13, 2018 in the towns of Lawrence, Andover, and North Andover, in the Merrimack Valley region of Massachusetts. Cumulatively, these incidents resulted in the death of a young man and the injuries to 25 other people. There were 60-80 structure fires, according to early reports, as gas distribution lines became over-pressurized.

The preliminary PHMSA report lists all of these Massachusetts fires as a single event, so it is counted as one fire and one explosion in Table 1. As of the November 14 download of the data, property damage has not been calculated, and is listed as $0. The number of evacuees in the report also stands at zero. This serves as a reminder that analysis of the oil and gas industry can only be as good as the available data, and relying on operators to accurately self-report the full extent of the impacts is a somewhat dubious practice.

View map fullscreen | How FracTracker maps work
This map shows pipeline incidents in the US from 1/1/2010 through 11/14/2018. Source: PHMSA. One record without coordinates was discarded, and 10 records had missing decimal points or negative (-) signs added to the longitude values. A few obvious errors remain, such as a 2012 incident near Winnipeg that should be in Texas, but we are not in a position to guess at the correct latitude and longitude values for each of the 5,512 incidents.

Another recent incident occurred in Center Township, a small community in Beaver County, Pennsylvania near Aliquippa on September 10, 2018. According to the PHMSA Gas Transmission & Gathering report, this incident on the brand new Revolution gathering line caused over $7 million in damage, destroying a house and multiple vehicles, and required 49 people to evacuate. The incident was indicated as a fire, but not an explosion. However, reporting by local media station WPXI quoted this description from a neighbor:

A major explosion, I thought it was a plane crash honestly. My wife and I jumped out of bed and it was just like a light. It looked like daylight. It was a ball of flame like I’ve never seen before.

From the standpoint of the data, this error is not particularly egregious. On the other hand, it does serve to falsely represent the overall safety of the system, at least if we consider explosions to be more hazardous than fires.

Big picture findings

Comparing the three reports against one another, we can see that the majority of incidents (64%) and damages (also 64%) are caused by hazardous liquids pipelines, even though the liquids account for less than 8% of the total mileage of the network. In all of the other categories, however, gas distribution lines account for more than half of the cumulative damage, including injuries (79%), deaths (73%), evacuees (62%), fires (71%), and explosions (78%). This is perhaps due to the vast network (more than 2.2 million miles) of gas distribution mains and service lines, as well as their nature of taking these hazardous products directly into populated areas. Comparatively, transmission and hazardous liquids lines ostensibly attempt to avoid those locations.

Is the age of the pipeline a factor in incidents?

Among the available attributes in the incident datasets is a field indicating the year the pipeline was installed. While this data point is not always completed, there is enough of a sample size to look for trends in the data. We determined the age of the pipe by subtracting the year the pipe was installed from the year of the incident, eliminating nonsensical values that were created when the pipeline age was not provided. In the following section, we will look at two tables for each of the three reports. The first table shows the cause of the failure compared to the average age, and the second breaks down results by the content that the pipe was carrying. We’ll also include a histogram of the pipe age, so we can get a sense of how representative the average age actually is within the sample.

A. Gas distribution

Each table shows some fluctuation in the average age of pipeline incidents depending on other variables, although the variation in the product contained in the pipe (Table 3) are minor, and may be due to relatively small sample sizes in some of the categories. When examining the nature of the failure in relation to the age of the pipe (Table 2), it does make sense that incidents involving corrosion would be more likely to afflict older pipelines, (although again, the number of incidents in this category is relatively small). On average, distribution pipeline incidents occur on pipes that are 33 years old.

When we look at the histogram (Figure 1) for the overall distribution of the age of the pipeline, we see that those in the first bin, representing routes under 10 years of age, are actually the most frequent. In fact, the overall trend, excepting those in the 40 t0 50 year old bin, is that the older the pipeline, the fewer the number of incidents. This may reflect the massive scale of pipeline construction in recent decades, or perhaps pipeline safety protocol has regressed over time.

Pipeline incidents charting

Figure 1. Age of pipeline histogram for gas distribution line incidents between 1/1/2010 and 11/14/2018. Incidents where the age of the pipe is unknown are excluded.

B. Gas Transmission & Gathering

Transmission & Gathering line incidents occur on pipelines routes that are, on average, five years older than their distribution counterparts. Corrosion, natural force damage, and material failures on pipes and welds occur on pipelines with an average age above the overall mean, while excavation and “other outside force” incidents tend to occur on newer pipes (Table 4). The latter category would include things like being struck by vehicles, damaged in wildfires, or vandalism. The contents of the pipe does not seem to have any significant correlation with the age of the pipe when we take sample size into consideration (Table 5).

The histogram (Figure 2) for the age of pipes on transmission & gathering line incidents below shows a more normal distribution, with the noticeable exception of the first bin (0 to 10 years old) ranking second in frequency to the fifth bin (40 to 50 years old).

It is worth mentioning that, “PHMSA estimates that only about 5% of gas gathering pipelines are currently subject to PHMSA pipeline safety regulations.” My correspondence with the agency verified that the remainder is not factored into their pipeline mileage or incident reports in any fashion. Therefore, we should not consider the PHMSA data to completely represent the extent of the gathering line network or incidents that occur on those routes.

Pipeline incidents chart

Figure 2. Age of pipeline histogram for transmission & gathering line incidents between 1/1/2010 and 11/14/2018. Incidents where the age of the pipe is unknown are excluded.

C. Hazardous Liquids

The average incident on hazardous liquid lines occurs on pipelines that are 27 years old, which is 6 years younger than for distribution incidents, and 11 years younger than their transmission & gathering counterparts. This appears to be heavily skewed by the equipment failure and incorrect operation categories, both of which occur on pipes averaging 15 years old, and both with substantial numbers of incidents. On the other hand, excavation damage, corrosion, and material/weld failures tend to occur on pipes that are at least 40 years old (Table 6).

In terms of content, pipelines carrying carbon dioxide happen on pipes that average just 11 years old, although there are not enough of these incidents to account for the overall departure from the other two datasets (Table 7).

The overall shape of the histogram (Figure 3) is similar to that of transmission & gathering line incidents, except that the first bin (0 to 10 years old) is by far the most frequent, with more than 3 and a half times as many incidents as the next closest bin (4o to 50 years old). Operators of new hazardous liquid routes are failing at an alarming rate. In descending order, these incidents are blamed on equipment failure (61%), incorrect operation (21%), and corrosion (7%), followed by smaller amounts in other categories. The data indicate that pipelines installed in previous decades were not subject to this degree of failure.

Pipeline incidents charting

Figure 3. Age of pipeline histogram for hazardous liquid line incidents between 1/1/2010 and 11/14/2018. Incidents where the age of the pipe is unknown are excluded.

Conclusions

When evaluating quotes, like those listed above, that portray pipelines as a safe way of transporting hydrocarbons, it’s worth taking a closer look at what they are saying.

Are pipelines the safest way of transporting our nation’s energy products? This presupposes that our energy must be met with liquid or gaseous fossil fuels. Certainly, crude shipments by rail and other modes of transport are also concerning, but movements of solar panels and wind turbines are far less risky.

Does the industry have the “strong safety record” that PHMSA proclaims? Here, we have to grapple with the fact that the word “safety” is inherently subjective, and the agency’s own data could certainly argue that the industry is falling short of reasonable safety benchmarks.

And what about the claim that barrels of oil or petroleum products reach their destination “99.999% of the time? First, it’s worth noting that this claim excludes gas pipelines, which account for 92% of the pipelines, even before considering that PHMSA only has records on about 5% of gas gathering lines in their pipeline mileage calculations. But more to the point, while a 99.999% success rate sounds fantastic, in this context, it isn’t good enough, as this means that one barrel in every 100,000 will spill.

For example, the Dakota Access Pipeline has a daily capacity of 470,000 barrels per day (bpd). In an average year, we can expect 1,715 barrels (72,030 gallons) to fail to reach its destination, and indeed, there are numerous spills reported in the course of routine operation on the route. The 590,000 bpd Keystone pipeline leaked 9,700 barrels (407,400 gallons) late last year in South Dakota, or what we might expect from four and a half years of normal operation, given the o.001% failure rate. In all, PHMSA’s hazardous liquid report lists 712,763 barrels (29.9 million gallons) were unintentionally released, while an additional 328,074 barrels (13.8 million gallons) were intentionally released in this time period. Of this, 284,887 barrels (12 million gallons) were recovered, meaning 755,950 barrels (31.7 million gallons) were not.

Beyond that, we must wonder whether the recent spate of pipeline incidents in new routes is a trend that can be corrected. Between the three reports, 1,283 out of the 3,853 (32%) incidents occurred in pipelines that were 10 years old or younger (where the year the pipeline’s age is known). A large number of these incidents are unforced errors, due to poor quality equipment or operator error.

One wonders why regulators are allowing such shoddy workmanship to repeatedly occur on their watch.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

2018 Community Sentinel Award Recipients and Reception

A Sincere Thank You, 2018 Community Sentinel Award Recipients

Reflecting back on the Community Sentinel award reception, held on November 26th, I can’t help but be in awe of the raw grit and determination that filled the room. It was a cold, blustery day in Pittsburgh – and yet the hall felt warm from the passion each of the Community Sentinels awardees exuded. FracTracker Alliance and our many award sponsors and partners were so very proud to award Nalleli Cobo of California, Rebecca Roter and Ellen Gerhart of Pennsylvania, and Natasha Léger of Colorado with the 2018 Community Sentinel Award for Environmental Stewardship. (On a more personal note… This is the first year that all of the recipients have been women. Kudos!)

The Program on November 26th

As I nervously re-checked the AV equipment for the presentations to be led by our emcee from Rootskeeper, David Braun, attendees spent time networking and getting to know the awardees. We met people from all walks of life – each of them concerned about the negative impacts the oil and gas industry.

Rebekah Sale, of the Property Rights and Pipeline Center, kicked off the event with introductions, followed by David Braun to set the stage. Lauren Davis, of The 11th Hour Project, then graciously gave the keynote address. During her formative years as a funder, Lauren met many frontline communities – from the people facing the impacts of oil and gas development in their backyards to volunteers responding to the Deepwater Horizon oil spill along the Gulf. Working with these early community sentinels served as a critical juncture in her career. Lauren thanked them for the many lessons they taught her about perseverance, patience, and integrity.

Each year during the Community Sentinel Awards program we honor activists who valiantly fought against the harms of dirty energy but passed away in the past year in a presentation called “Legacy of Heroes.” During this year’s program we celebrated the lives and passions of Ben Stout of West Virginia, Ray Beiersdorfer of Ohio, and Carol Zagrocki of Pennsylvania. On behalf of all of the award partners and sponsors, a heartfelt thank you goes out to these incredible advocates who are truly leaving behind a Legacy of Heroes. Learn more about their inspiring work below.

And last but not least, the four recipients of the 2018 Community Sentinel award were presented with their awards.

David Braun introduced Nalleli Cobo, who became an activist at a young age after experiencing severe health impacts from nearby urban drilling. Nalleli has been a critical voice in the movement to end oil drilling in Los Angeles’ neighborhoods. Veronica Coptis of Center for Coalfield Justice presented the award to Ellen Gerhart, a renowned but reluctant activist in Pennsylvania. She has fearlessly stood in the way of Sunoco/Energy Transfer Partners for the past few years in order to protect her family’s home from the Mariner East pipelines. Matt Mehalik of the Breathe Project then introduced Natasha Léger. Natasha, a steadfast and eloquent lawyer by training, is currently leading a team of dedicated people in protecting the North Fork Valley of Delta County Colorado from irresponsible oil and gas development and fracking. Raina Rippel of the Southwest Pennsylvania Environmental Health Project then presented the final award to Rebecca Roter. Rebecca, who moved out of PA to escape the health effects of oil and gas development near her home, still works tirelessly to protect communities from fracking’s impacts through strategic advocacy and on-the-ground research.

On behalf of all those who benefit from your resolute endeavors – Thank You, Dear Sentinels.

Check out the Community Sentinels in action | Reception slideshow

More About the Awardees

  • Nalleli Cobo
    Nalleli Cobo - 2018 Community Sentinel Award RecipientAt age nine, Nalleli Cobo unknowingly engaged in community activism. Her journey began when she noticed she was often ill. Her frequent headaches, stomach pains, nosebleeds, and body spasms worsened to asthma and heart palpitations. Soon after, Nalleli learned others in her community were also having similar problems. Nalleli lived in an apartment complex in South L.A. across from AllenCo’s oil drilling operations. Terrible odors would take over her community every day. After calling regulatory agencies, Nalleli noticed the smells from the oil well only getting worse. Nalleli and her neighbors took action – creating a grassroots campaign called People Not Pozos (Wells). Through grassroots activism, Nalleli strengthened her community’s voice by fighting the oil company poisoning her neighborhood. After a hard fight, AllenCo temporarily closed in November 2013. Her community is fighting to close it permanently.

    Nalleli is a member of the South Los Angeles Youth Leadership Coalition. This group, along with Communities for a Better Environment Youth from Wilmington, sued the City of Los Angeles for environmental racism and violation of CEQA. Nalleli is a member of STAND LA (Stand Together Against Neighborhood Drilling – Los Angeles). STAND LA works tirelessly to establish a 2500-ft buffer between oil extraction, homes, and sensitive land.

  • Ellen Gerhart
    Ellen Gerhart - 2018 Community Sentinel Award Recipient

    Being an activist was not on Ellen Gerhart’s bucket list for retirement. She was born 63 years ago in Monaca, PA, a small steel mill town near Pittsburgh. She attended Penn State University, where she received a BS in linguistics, teaching certification in deaf-ed, English as a 2nd language, and biology and general science. Ellen also met her husband Stephen there. They bought a house in Huntingdon County, where they raised two daughters, Lyra and Elise. After 28 years of teaching, Ellen retired. That same year, 2015, the fight against the Energy Transfer Partners (ETP) Mariner East 2 pipeline began.

    In the three years since, Ellen has had three acres of woodlands and wetlands seized through eminent domain; helped establish a resistance camp and aerial blockade known as Camp White Pine; supported tree sits on her property; been heavily surveilled, threatened, and harassed; and arrested 3 times (released from a 2-6 month jail sentence on September 26, 2018). She most recently attended an ETP unit holders meeting in Dallas, TX where she and other activists confronted CEO Kelcy Warren.

  • Rebecca Roter
    Rebecca Roter - 2018 Community Sentinel Award RecipientRebecca Roter grew up in West Philadelphia. Her parents’ involvement in the civil rights and anti-war movements instilled values of standing witness and speaking truth to power. In 1986, when she moved to Susquehanna County, she had no clue the Marcellus Shale under her feet would spur her advocacy for public health. After the first test well was drilled in the county in 2006, she organized an EPA citizen Marcellus listening session, spearheaded a grassroots community billboard campaign, gave guided tours and interviews to national and international media, facilitated the Duke University NEPA ground water studies, and worked with Clean Air Council – winning PA DEP public hearings for compressors. She networked at every turn with federal and state agencies advocating for scientific research, fact-driven discussion, and public health

    In 2013, Rebecca co-founded the grassroots group Breathe Easy Susquehanna County (BESC) striving to unify a community long divided over natural gas, air quality, and public health. BESC arranged local radio interviews with health care professionals about air pollution, natural gas infrastructure and public health; collaborated with Public Lab to design a Community Formaldehyde Monitoring project; collected citizen science formaldehyde data used in a peer reviewed article; and has a seat on an academic stakeholder advisory board. BESC partnered with researchers from University of London for a citizen science air study generating seven months of continuous PM2.5 data county wide. Data near the Williams Central Compressor was shared with federal and state health agencies.

    EPA follow up testing was used for an ATSDR Health Consultation. Two days after this consultation was publicly released , PA DEP announced plans for Air Quality Stations in shale counties. As of 10.25.18 , the continuous PM2.5 PA DEP monitoring station was operational in Susquehanna County; a victory for public health brought home by citizen science.

  • Natasha Léger
    Natasha Léger - 2018 Community Sentinel Award RecipientNatasha Léger is the Executive Director (Interim) of Citizens For A Healthy Community (CHC). CHC is a grassroots nonprofit dedicated to protecting air, water and foodsheds in the Delta County region of Southwest Colorado from the impacts of oil and gas development. Before stepping in as Interim ED, Natasha served on the board. She brings to CHC legal, location, ecosystem, and industry analysis experience. Natasha is an international trade attorney, turned independent business consultant, turned editor of a location intelligence magazine, turned author of Travel Healthy: A Road Warrior’s Guide to Eating Healthy. She believes clean air, water, soils, and nouri (a word to describe what we should be eating for optimum health) are a basic human right. 

    Under her leadership, CHC has developed new strategic partnerships with state, regional, and national impacted citizens groups and environmental and conservation groups, and developed tools for empowering the community to respond to threats from oil and gas activity in the North Fork Valley. She championed the ground breaking community cost-benefit analysis of a proposed natural gas project, and contributed to the first food-shale production map to highlight the risks to our food supply of overlapping oil and gas activity with farms. She also exposed the regulatory black hole around rural gas-gathering pipelines. Her work in empowering the community has led to withdrawal of projects and leasing proposals that threaten the community, and an unprecedented number of public comments and widespread opposition to oil and gas development in the North Fork Valley, which serves a unique role in Colorado’s food supply, recreation economy, and biodiversity. 

Legacy of Heroes Presentation

Use the slideshow controls on the right to learn about the dedication of Ben, Ray, and Carol.


Sponsors and Partners

The Sentinels’ program and reception requires financial support – for monetary awards, awardee travel, and many other costs. As such, each year we call upon dedicated sponsors and partners to provide resources to enable this endeavor to continue. The often-thankless jobs that community sentinels do each day in protecting our health and the environment deserve no less.

Thank you to our incredible 2018 award sponsors: The 11th Hour Project, The Heinz Endowments, The Foundation for Pennsylvania Watersheds and a generous anonymous donor. We could not do this work without your support.

And a big thank you to our partners in presenting the award: Allegheny-Blue Ridge Alliance, Breathe Project, Center for Coalfield Justice, Crude Accountability, Earthworks, Food and Water Watch, Halt the Harm Network, Ohio Valley Environmental Coalition, Property Rights and Pipeline Center, Save the Hills Alliance, Sierra Club, Southwest Pennsylvania Environmental Health Project, and Viable Industries.


Nominees

This year, 23 people were nominated by their peers to receive this distinguished award (listed below).

  • Richard Averitt – Nellysford, VA
  • Odessa, Gunner, Kylan, and Nels Bjornson – Scenery Hill, PA
  • Mark Borchardt – Marshfield, NY
  • Shelley Brock – Eagle, ID
  • Genevieve Butler – Freetown, LA
  • John Childe – Dauphin, PA
  • Malinda Clatterbuck – Holtwood, PA
  • Nalleli CoboSan Gabriel, CA* 
  • Torch Can Do – Coolville, OH
  • Karen Feridun – Kutztown, PA
  • Friends of Buckingham – Buckingham, VA
  • Ellen GerhartHuntington, PA*
  • Bill Huston – Dimock, PA
  • April Keating – Buckhannon, WV
  • Natasha LégerPaonia, CO*
  • Megan Mcdonough – Elizabeth, PA
  • Janice Milburn – Ligonier, PA
  • Misha Mitchell – Plaquemine, LA
  • Anne Rolfes – New Orleans, LA
  • Rebecca RoterMontrose, PA and Nicholson, GA*
  • Douglas Shields – Pittsburgh, PA
  • Diane Sipe – Evans City, PA
  • Joe Spease – Overland Park, KS

* Denotes 2018 award recipient


Judges

Many thanks to the following judges for donating their time to review all of the nominations. 

  • Jill Hunkler – Activist, Ohio
  • Raina Rippel – Southwest Pennsylvania Environmental Health Project
  • Dan Shaffer – Allegheny-Blue Ridge Alliance and Dominion Pipeline Monitoring Coalition
  • Elena Sorokina – Crude Accountability
  • Dan Xie – Student PIRGs (Public Interest Research Groups)

Reception Photo Gallery

Events

Nothing Found

Sorry, no posts matched your criteria