Posts

Release: The 2019 You Are Here map launches, showing New York’s hurdles to climate leadership

For Immediate Release

Contact: Lee Ziesche, lee@saneenergyproject.org, 954-415-6282

Interactive Map Shows Expansion of Fracked Gas Infrastructure in New York State

And showcases powerful community resistance to it

New York, NY – A little over a year after 55 New Yorkers were arrested outside of Governor Cuomo’s door calling on him to be a true climate leader and halt the expansion of fracked gas infrastructure in New York State, grassroots advocates Sane Energy Project re-launched the You Are Here (YAH) map, an interactive map that shows an expanding system of fracked infrastructure approved by the Governor.

“When Governor Cuomo announced New York’s climate goals in early 2019, it’s clear there is no room for more extractive energy, like fossil fuels.” said Kim Fraczek, Director of Sane Energy Project, “Yet, I look at the You Are Here Map, and I see a web of fracked gas pipelines and power plants trapping communities, poisoning our water, and contributing to climate change.”

Sane Energy originally launched the YAH map in 2014 on the eve of the historic People’s Climate March, and since then, has been working with communities that resist fracked gas infrastructure to update the map and tell their stories.

“If you read the paper, you might think Governor Cuomo is a climate leader, but one look at the YAH Map and you know that isn’t true. Communities across the state are living with the risks of Governor Cuomo’s unprecedented buildout of fracked gas infrastructure,” said Courtney Williams, a mother of two young children living within 400 feet of the AIM fracked gas pipeline. “The Governor has done nothing to address the risks posed by the “Algonquin” Pipeline running under Indian Point Nuclear Power Plant. That is the center of a bullseye that puts 20 million people in danger.”

Fracked gas infrastructure poses many of the same health risks as fracking and the YAH map exposes a major hypocrisy when it comes to Governor Cuomo’s environmental credentials. The Governor has promised a Green New Deal for New York, but climate science has found the expansion of fracking and fracked gas infrastructure is increasing greenhouse gas emissions in the United States.

“The YAH map has been an invaluable organizing tool. The mothers I work with see the map and instantly understand how they are connected across geography and they feel less alone. This solidarity among mothers is how we build our power ,” said Lisa Marshall who began organizing with Mothers Out Front to oppose the expansion of the Dominion fracked gas pipeline in the Southern Tier and a compressor station built near her home in Horseheads, New York. “One look at the map and it’s obvious that Governor Cuomo hasn’t done enough to preserve a livable climate for our children.”

“Community resistance beat fracking and the Constitution Pipeline in our area,” said Kate O’Donnell  of Concerned Citizens of Oneonta and Compressor Free Franklin. “Yet smaller, lesser known infrastructure like bomb trucks and a proposed gas decompressor station and 25 % increase in gas supply still threaten our communities.”

The YAH map was built in partnership with FracTracker, a non-profit that shares maps, images, data, and analysis related to the oil and gas industry hoping that a better informed public will be able to make better informed decisions regarding the world’s energy future.

“It has been a privilege to collaborate with Sane Energy Project to bring our different expertise to visualizing the extent of the destruction from the fossil fuel industry. We look forward to moving these detrimental projects to the WINS layer, as communities organize together to take control of their energy future. Only then, can we see a true expansion of renewable energy and sustainable communities,” said Karen Edelstein, Eastern Program Coordinator at Fractracker Alliance.

Throughout May and June Sane Energy Project and 350.org will be traveling across the state on the ‘Sit, Stand Sing’ tour to communities featured on the map to hold trainings on nonviolent direct action and building organizing skills that connect together the communities of resistance.

“Resistance to fracking infrastructure always starts with small, volunteer led community groups,” said Lee Ziesche, Sane Energy Community Engagement Coordinator. “When these fracked gas projects come to town they’re up against one of the most powerful industries in the world. The You Are Here Map and ‘Sit, Stand Sing’ tour will connect these fights and help build the power we need to stop the harm and make a just transition to community owned renewable energy.”

destroyed home following pipeline explosion in San Bruno, CA

Unnatural Disasters

Guest blog by Meryl Compton, policy associate with Frontier Group

Roughly half of the homes in America use gas for providing heat, hot water or powering appliances. If you use gas in your home, you know that leaks are bad – they waste money, they pollute the air, and, if exposed to a spark, they could spell disaster.

Our homes, however, are only the end point of a vast production and transportation system that brings gas through a network of pipelines all the way from the wellhead to our kitchens. There are opportunities for wasteful and often dangerous leaks all along the way – leaks that threaten the public’s health and safety and contribute to climate change.

How frequent are gas leaks?

Between January 2010 and November 2018, there were a reported 1,888 incidents that involved a serious injury, fatality or major financial loss related to gas leaks in the production, transmission and distribution system, according to data from the Pipeline and Hazardous Materials Safety Administration. These incidents caused 86 deaths, 487 injuries and over $1 billion in costs.

When gas lines leak, rupture, or are otherwise damaged, the gas released can explode, sometimes right in our own backyards. Roughly one in seven of the incidents referenced above – 260 in total – involved an explosion.

In September 2018, for example, a series of explosions in three Massachusetts communities caused one death, numerous injuries and the destruction of as many as 80 homes. And there are many more stories like it from communities across the U.S. From the 2010 pipeline rupture and explosion in San Bruno, California, that killed eight people and destroyed almost 40 homes to the 2014 disaster in New York City that destroyed two five-story buildings and killed eight people, these events serve as a powerful reminder of the danger posed by gas.

The financial and environmental costs

Gas leaks are also a sheer waste of resources. While some gas is released deliberately in the gas production process, large amounts are released unintentionally due to malfunctioning equipment, corrosion and natural causes like flooding. The U.S. Energy Information Administration estimates that 123,692 million cubic feet of gas were lost in 2017 alone, enough to power over 1 million homes for an entire year. That amount is likely an underestimate. On top of the major leaks reported to the government agency in charge of pipeline safety, many of our cities’ aging gas systems are riddled with smaller leaks, making it tricky to quantify just how much gas is lost from leaks in our nation’s gas system.

Leaks also threaten the stability of our climate because they release large amounts of methane, the main component of gas and a potent greenhouse gas. Gas is not the “cleaner” alternative to coal that the industry often makes it out to be. The amount of methane released during production and distribution is enough to reduce or even negate its greenhouse gas advantage over coal. The total estimated methane emissions from U.S. gas systems have roughly the same global warming impact over a 20-year period as all the carbon dioxide emissions from U.S. coal plants in 2015 – and methane emissions are likely higher than this amount, which is self-reported by the industry.

In most states, there is no strong incentive for gas companies to reduce the amount of leaked gas because they can still charge customers for it through “purchased gas adjustment clauses.” These costs to consumers are far from trivial. Between 2001 and 2011, Americans paid at least $20 billion for gas that never made it to their homes.

These and other dangers of gas leaks are described in a recent fact sheet by U.S. PIRG Education Fund and Frontier Group. At a time when climate change is focusing attention on our energy system, it is critical that communities understand the full range of problems with gas – including the ever-present risk of leaks in the extensive network of infrastructure that brings gas from the well to our homes.

The alternative

We should not be using a fuel that endangers the public’s safety and threatens the stability of our climate. Luckily, we don’t have to. Switching to electric home heating and hot water systems and appliances powered by renewable energy would allow us to move toward eliminating carbon emissions from homes. Electric heat pumps are twice as efficient as gas systems in providing heat and hot water, making them a viable and commonsense replacement. Similarly, as the cost of wind and solar keep falling, they will continue to undercut gas prices in many regions.

It’s time to move beyond gas and create a cleaner, safer energy system.

By Meryl Compton, policy associate with Frontier Group, a non-profit think tank part of The Public Interest Network. She is based in Denver, Colorado.

Feature image at top of page shows San Bruno, California, following the 2010 pipeline explosion

Virtual Pipelines - Potential Routes to Cayuga

Virtual pipelines: Convenient for Industry, a Burden on Communities

As the natural gas industry faces harsher and more widespread critiques from environmentalists and citizens, pipeline projects are facing delays, fines, and defeat. Aside from the questionable economics behind transporting gas and oil by pipeline, there are broad economic risks associated with pipeline accidents. With an increasing list of pipeline-related accidents in the public eye, including the two this past summer in Texas and Kansas, blasts this fall in Beaver County, PA, and in Boston, MA, scrutiny of new pipeline projects is on the uptick.

That being said, what is the alternative?

Virtual Pipelines?

Virtual Pipeline - Oil and gas truck

Loaded CNG transport vehicle

Industry, not deterred by resistance from regulators and environmentalists, has developed a new work-around method to get their product to market. Rather than build pipelines across rugged, remote, or highly-populated terrain, a new “solution” called “virtual pipelines” has come on the scene, with roots in New England in 2011.

The term “virtual pipeline,” itself, is so new that it is trademarked by Xpress Natural Gas (XNG), Boston, MA. XNG and other virtual pipeline companies use specially-designed tanker trucks to move compressed natural gas (CNG) or liquefied natural gas (LNG) via our public roads and highways. CNG in this system is under very high pressure — up to 3,600 psi when tank trailers are full. Rail and barge shipments are also considered part of the system, and trailers are designed to be easily loaded onto train cars or boats.

For the gas industry, virtual pipelines can be used in locales where gas is only needed for a limited time period, the pipeline network is not developed, or opposition by landowners is too contentious to make eminent domain an option, among other issues. These virtual pipeline trucks are identifiable by the hazard class 2.1 placard they carry: 1971, indicative of flammable, compressed natural gas or methane.

Restricted only by permissible weight limits on roads (up to 80,000 pounds or more), 5-axle trucks may make in excess of 100 round trips a day from the fueling location to their destination — sometimes hundreds of miles away. These trucks, which may travel alone or in caravans, are identifiable by the hazard class 2.1 placard they carry: 1971, indicative of flammable, compressed natural gas or methane. Manufacturers of these virtual pipeline rigs tout the safety considerations that go into their engineered design. These considerations include special pressure monitoring for the dozens of tanks and super-strength materials to protect against ruptures.

Specialized equipment has been created to load compressed gas tanks into the trailers that will carry them to their destinations. Here’s a promotional video from Quantum:

Loading CNG into specialized trailers for transport

Impacts on Communities

Following New York State’s rejection of the Constitution Pipeline in 2016 based on water quality concerns, industry has been looking for ways to move natural gas from Pennsylvania’s Marcellus gas fields to the Iroquois Pipeline. The current strategy is to load the gas in canisters from a special compressor facility, and re-inject the gas to a pipeline at the journey’s endpoint. The extent to which virtual pipelines may be utilized in New York State and New England is not well known, but the natural gas industry does speak in sanguine terms about this strategy as a solution to many of its transportation issues.

Citizen blogger/activist Bill Huston has compiled a list accidents that have occurred with CNG transport trucks along the virtual pipeline that runs from a “mother station” at Forest Lake, PA to Manheim, NY, near the Iroquois pipeline. While there have been no explosions or loss of life as a result of these accidents, there are a number of reported incidents of trucks tipping or rolling over, sliding off the road, or spontaneously venting.

To move CNG from “Point A” to “Point B,” truck traffic through populated areas is unavoidable. In central New York, public outcry about virtual pipelines is rising, due in large part to the safety issues associated with increased truck traffic on state highways. In rural New York, state highways run through towns, villages, and cities. They are not separated from population centers in the way that interstate highways typically are. Traffic from CNG transport trucks clogs roadways, in some cases burdening the pass-through communities with 100 or more tractor trailers a day. Routes pass directly in front of schools and health care facilities.

In short, virtual pipelines present a public safety hazard that has yet to be addressed.

Virtual Pipelines and the Cayuga Power Plant 

In Lansing, NY, there is an inefficient and economically-beleaguered power plant, currently run on coal, that the power utility would prefer to see shut down. The Cayuga Power Plant was cited in 2016 for exceeding mercury emissions by nearly 2000%. Its inherently inefficient design makes it a significant greenhouse gas contributor. Years ago, it provided considerable tax benefits to its host community of Lansing, and as such has some lingering support. After both a devastating fire in one stack and mechanical failure in another, the plant has been barely running for the past 3 or 4 years. It is currently used as a “peaker plant“, operating only during periods of excessive demand on the electric grid, during summer months.

New York State’s Governor, Andrew Cuomo, has stated that all coal-power plants will be shut down by 2020.

Cayuga Power Plant in Lansing, NY.

Nonetheless, the plant owners are pushing to re-power the Cayuga Power Plant with natural gas. Currently, however, there is no pipeline to deliver the gas to the plant.  Without support by the public nor the Public Service Commission for the construction of a supply pipeline, Cayuga Power Plant has revealed they plan to receive gas deliveries via truck.

Scenario Maps

FracTracker has modeled the five most likely scenarios that would take compressed natural gas from a loading station in northern Pennsylvania to the Cayuga Power Plant in Lansing. All of the scenarios bring the trucks through populated communities, in dangerous proximity to high-risk facilities where both human safety and evacuations are problematic. The routes also pass through intersections and road stretches that have some of the highest accident rates in the area.

Route 1: This route passes within a half mile of homes of 36,669 people in the Villages of Lansing, Candor, Spencer, Owego; Towns of Ithaca, Lansing, Newfield, Danby, Candor, Spencer, Tioga, Owego, Vestal; and the City of Ithaca. Within the half-mile evacuation zone of this route, should there be an accident, are:

  • 17 health care facilities
  • 20 day care centers
  • 4 private school
  • 21 public schools

Click on the tabs in the box above to explore the five potential truck routes with maps.

Interactive Map

For a full interactive map of the potential routes for CNG delivery to the Cayuga Power Plant, and the schools, health care facilities, etc. within a half-mile evacuation zone of the routes, view the interactive map below.

View map fullscreen | How FracTracker maps work

A Call for Alternative Energy

Despite the apparent convenience that virtual pipelines present for the fossil fuel industry, they are not the solution the future energy supply needs. Yes, they present an alternative to pipeline transportation — but they also play a disastrous role in continuing our descent into climate chaos caused by increasing greenhouse gas concentrations in the atmosphere.

Methane leakage is an unavoidable component of the entire life cycle of natural gas usage — from “cradle to grave” — or more precisely, from the moment a well is drilled to when the gas is combusted by its end-user. And methane, as a greenhouse gas, is up to 100 times more potent than carbon dioxide. The Intergovernmental Panel on Climate Change’s (IPCC) recent report (see summary here) is unflinching in its clarion call for immediate, and extreme, cut-backs in greenhouse gas production. If we choose not to heed this call, much of humanity’s future survival is called into question.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

More of the details about the Cayuga Power Plant will be explained in the upcoming weeks in a related guest blog by environmental activist and organizer, Irene Weiser, of Tompkins County, NY.

 

 

Brook Lenker at the 2017 Climate March in Washington DC

Rise for Climate – September 8, 2018

FracTracker is pleased to join thousands of other organizations across the U.S. and around the world participating in Rise for Climate – a global day of action on Saturday, September 8th – to demand our leaders at every level of government commit to building a fossil fuel free world. We encourage all of our partners, supporters, followers, and website users to find and participate in an event near them.

The time has arrived for renewable energy, heightened efficiency, and smart policies that reduce carbon emissions and encourage healthy and just economies. With unequivocal science and data on our side, the swift, frightening realities of climate change must be shared loudly and boldly. The clean energy path to prosperity must be illuminated in the public’s eye. A recent analysis by E2 shows the country had nearly 3.2 million Americans working in wind, solar, energy efficiency, and other clean energy jobs in 2017. These jobs outnumber fossil fuel jobs 3 to 1. Working together, we can add to these numbers and accelerate the transition off fossil fuels.

Rise for Climate is a chance to demonstrate your concern, speak your mind, and resolve to fight for a habitable future. FracTracker staff will be out, too, doing their part. From San Francisco to Lansing, NY and Harrisburg, PA, we’re leading and engaging in activities – because it’s too important to stay home.

What are you doing tomorrow? The future is now.


By Brook Lenker, Executive Director, FracTracker Alliance

Porterville incident map

Mysterious leak near Porterville Compressor Station, NY

Last month, FracTracker Alliance featured a blog entry and map exploring the controversy around National Fuel’s proposed Northern Access Pipeline (NAPL) project, shown in the map below. The proposed project, which has already received approval from the Federal Energy Regulatory Commission (FERC), is still awaiting another decision by April 7, 2017 — Section 401 Water Quality Certification. By that date, the New York State Department of Environmental Conservation (NYS DEC) must give either final approval, or else deny the project.

Northern Access Pipeline Map

View map fullscreen | How FracTracker maps work

The NAPL project includes the construction of 97-mile-long pipeline to bring fracked Marcellus gas through New York State, and into Canada. The project also involves construction of a variety of related major infrastructure projects, including a gas dehydration facility, and a ten-fold expansion of the capacity of the Porterville Compressor Station located at the northern terminus of the proposed pipeline, in Erie County, NY.

On three consecutive days in early February, 2017, the New York State Department of Environmental Conservation (NYS DEC) held hearings in Western New York to gather input about the NAPL project. On February 7th, the day of the first meeting at Saint Bonaventure University in Allegany County, NY, an alarming — and yet to be fully reported — incident widely considered to be a gas leak, occurred at, or near, the Porterville Compressor Station (also known locally as the “Elma Compressor Station”). The incident is thought to be connected to the planned upgrades to the facility, but was not even mentioned as a concern during the public meetings relating to the Northern Access Pipeline in the subsequent hours and days.

What follows is a story of poor communication between the utility company, first responders, and local residents, resulting in confusion and even panic, and has yet to be conclusively explained to the general public.

Incident Description

 Area of incident

Area of incident in NY State

We know that a little past 10 AM on February 7th, people in the villages of Elma and East Aurora, within about a mile of the Porterville Compressor Station, reported strong odors of gas. They filed complaints with the local gas utility (National Fuel), and the local 911 center, which referred the calls to the local Elma Fire Department. The fire department went to the Porterville Compressor station to investigate, remembering a similar incident from a few years earlier. At the compressor station, representatives from National Fuel, the operator of the compressor station, assured the fire company that they were conducting a routine flushing of an odorant line, and the situation was under control, so the fire company departed.

Residents in the area became more alarmed when they noticed that the odor was stronger outside their buildings than inside them. National Fuel then ordered many residents to evacuate their homes. The East Aurora police facilitated the evacuation and instructed residents to gather in the East Aurora Library not far from those homes. Nearby businesses, such as Fisher Price, headquartered in East Aurora, chose to send their employees home for the day, due to the offensive odor and perceived risks.

Around 11:30 in the morning, up to 200 clients at Suburban Adult Services, Inc. (SASi), were evacuated to the Jamison Road Fire Station, where they remained until around 3 PM that afternoon. Over 200 reports were received, some from as far away as Orchard Park, eight miles down-wind of the compressor station.

After East Aurora elementary and middle schools placed complaints, National Fuel told them to evacuate students and staff from their buildings. Realizing that the smell was stronger outside than inside the building, school leaders revised their plans, and started to get buses ready to transport student to the high school, where there had not been reports of the odor. Before the buses could load, however, the police department notified the school that the gas leak had been repaired, and that there was no need to evacuate. School officials then activated the school’s air circulation system to rid the building of the fumes.

Perplexingly, according to one report, National Fuel’s Communications Manager Karen Merkel said “that the company did not reach out into the community to tell people what was going on because the company cannot discourage anyone from making an emergency gas call.”

Merkel noted further, “You never know if the smell being reported is related to work we are doing or another gas leak,” she said. “This wouldn’t be determined until we investigate it.”

That smell…

Some background on gas leaks & odorant additives

Ethyl mercaptan molecule

Ethyl mercaptan molecule

An odorant, such as ethyl mercaptan, is often added to natural gas in order to serve as an “early warning system” in the event of a leak from the system. Odorants like mercaptan are especially effective because the humans can smell very low concentrations of it in the air. According to the National Center for Biotechnology Information, “The level of distinct odor awareness (LOA) for ethyl mercaptan odorant is 1.4 x10-4 ppm,” or 0.00014 parts per million. That translates to 0.000000014 percent by volume.

Not all natural gas is odorized, however. According to Chevron Phillips, “mercaptans are required (by state and federal regulations) to be added to the gas stream near points of consumption as well as in pipelines that are near areas with certain population density requirements, per Department of Transportation regulations… Not all gas is odorized, though; large industrial users served by transmission lines away from everyday consumers might not be required to use odorized gas.” Also, because odorants tend to degrade or oxidize when gas is travelling a long distance through transmission lines, they are not always added to larger pipeline systems.

The explosion and flammability concentration limit for natural gas refers to the percentage range at which a gas will explode. At very low concentrations, the gas will not ignite. If the concentration is too high, not enough oxygen is present, and the gas is also stable. This is why gas in non-leaky pipelines does not explode, but when it mixes with air, and a spark is present, the result can be disastrous. Methane, the primary component of natural gas, has a lower explosive level (LEL) of 4.4% and an upper explosive limit (UEL) (above which it will not ignite) of 16.4%. Nonetheless, levels above 1% are still worrisome, and may still be good cause for evacuation.

Therefore, the margin of safety between when natural gas is detectable with an odorant present, and when it may explode, is very broad. This may help to explain why the smell of gas was detected over such a broad distance, but no explosion (very fortunately) took place.

Local memories of gas explosion in East Aurora

Many East Aurora residents have had first-hand experience with the dangers posed by gas lines in their community. Less than 25 years ago, in  September 1994, a high-pressure pipeline owned by National Fuel ruptured in an uninhabited area between East Aurora and South Wales along Olean Rd. The blast left a 10-foot-deep, 20-foot-wide crater, and tree limbs and vegetation were burned as far as 50 feet away.

Porterville first-hand accounts and inquiries

FracTracker spoke extensively with one resident of East Aurora, Jennifer Marmion, about her experiences, and efforts to understand what had actually happened the day of this incident.

When personnel from the Jamison Fire Company — who are assumed to be first responders to emergencies of this sort — arrived at the Porterville Compressor Station, they were told by National Fuel that there was no hazard and that their services were not needed. Consequently, these crews left the site. The East Aurora Police Department was given a different explanation by National Fuel; there was a valve malfunction somewhere along Two Rod Road in Marilla. Still later, National Fuel indicated that the pipeline changeover occurred closer to the compressor station itself. The closest distance between anywhere on Two Rod Road and the compressor station, itself, is a mile and a half. And Ms. Marmion was given a still different story by a National Fuel engineer: that the odor, indeed, resulted during the replacement of a 100-foot-long section of aging pipeline at the Porterville (“Elma”) Compressor Station.

Key locations in incident report

Key locations in incident report

Some reports indicated an alternate explanation: that the odor originated at the East Aurora Town Hall (J. Marmion, pers. comm., via Channel 7 News), or a leaky valve along a pipeline near Marilla (J. Marmion, pers. comm, via East Aurora Police Department dispatcher). A member of the East Aurora Fire Department surmised that the leak might have been closer to Olean Road, south of the village, where there was a history of other leaks. The day after the incident, National Fuel indicated that the odor originated from the compressor station, and was the result of a routine, scheduled “blowdown” by National Fuel — wherein gas lines at the compressor station are cleared as part of routine maintenance. However, when pressed for more details, they did not provide them.

In need of follow up

More than six weeks have passed since the incident, and there is still no definitive explanation available. Clearly, there was considerable confusion about what the correct, and safe, procedure needed to be, as well as how this information needed to flow to the public. Ultimately, a representative from National Fuel’s Government Affairs office agreed that he would alert the local towns and fire departments when maintenance activities would be occurring. It is surprising that this was not already standard practice.

Although Ms. Marmion is continuing to be a determined citizen activist, she has been met with a frustrating array of ambiguous and often conflicting descriptions, phone calls that go un-answered, voice mailboxes at offices that are either full or not set up to receive messages. Furthermore, although National Fuel has told Marmion that there is an Action Plan to be followed in the event of an emergency, they have been unable to provide her with a written or electronic version of this document, because “the action plan is just known.”

National Fuel points to the weather

National Fuel maintains that the only factor that was out of the ordinary was that during the event, a combination of unusual weather factors caused the released gas to travel in an unusual manner and also not dissipate as quickly as expected. National Fuel also indicated that the strong odor (created by the additive mercaptan) was a benefit to the local community, added to natural gas so that residents would be alerted to problems. It’s important to note that the largest gas transmissions pipelines, like the nearby 26” diameter Tennessee Gas Pipeline to the east of Elma and East Aurora, as well other pipelines that will run to the greatly expanded Porterville Compressor Station as part of the Northern Access Pipeline project, will be without the odorant.

Here’s what FracTracker could verify, based on National Weather Service, and Weather Underground historical data. In the morning and afternoon of February 7th, the wind was uncharacteristically blowing from the east/northeast — atypical for western New York, when winds normally come from the west. Wind speeds were recorded between 10-15 mph. Humidity was also uncharacteristically high for February — topping out at 93% that day. Warm air aloft, combined with freezing rain, created a temperature inversion. The moist air then trapped the odor, which lingered across the region.

weather_feb72017

feb72017_wind-data

Screen captures of weather statistics on February 7, 2017 (Source: wunderground.com). Note dominant wind direction from ENE, as well as high humidity, during morning and early afternoon, when incident took place.

Who monitors air quality in Western New York?

Calls by FracTracker for clarification from the New York State DEC’s Division of Air Resources have gone unanswered. The only station at which the DEC monitors methane is located more than 275 miles away to the southeast, in the Bronx. In Erie County, where the incident took place, there are only four permanent ambient air pollution monitoring stations. These include stations in:

  • Amherst: Continuous monitoring of ozone, NO2. Manual monitoring of PM5, acid deposition.
  • Buffalo: Continuous monitoring of SO2, NOx, NO, NO2, NOy, CO, CPM5. Manual monitoring of PM2.5, PM10, toxics
  • Brookside Terrace/Tonawanda: Continuous monitoring of SO2, CPM5. Manual monitoring of toxics and carbonyls
  • Grand Island (special purpose only): Continuous monitoring of CPM5. Manual monitoring of toxics and carbonyls

PM” refers to particulate matter diameter. PM5, for example, denotes particulate matter 5 microns in diameter, and smaller.

The East Aurora and Elma fire departments lack the appropriate air quality detection instruments to make their own judgements on the explosive nature of these gas plumes. Instead, small towns rely on the expertise of National Fuel to arrive on the scene after a call has been made, so that National Fuel can take measurements and then respond to the community. Some residents waited over three hours for an assessment, but by this time the plume had drifted away two hours ago.

National Fuel, however, has not disclosed any of the air quality data measurements they made on February 7th when they responded to this complicated incident. Ms. Marmion and others still want to know what levels of methane were measured in the communities involved in this incident, or the specific quantity of gas that entered the air that day.

What’s next?

While National Fuel did not notify the residents or the school district administration in advance of the scheduled “blowdown,” their Government Affairs Representative indicated that in the future, town governments, community leaders, and the local fire companies would be alerted to the upcoming releases and maintenance work. Nonetheless, weeks after the odor incident, National Fuel has neither contacted the local community leaders, nor local law enforcement, to provide complete and detailed answers as to what actually happened on February 7th.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance. Special thanks to East Aurora resident Jennifer Marmion, for her insights and comments. 

Northern Access Project - pipeline map

Northern Access Project: Exporting PA’s Marcellus Gas Northward

In March 2015, the National Fuel Gas Supply Corporation and Empire Pipeline Company filed a joint application with the Federal Energy Resource Commission (FERC) to construct a new natural gas pipeline and related infrastructure, known collectively as the Northern Access Project (NAPL). The pricetag on the project is $455 million, and is funded through international, as well as local, financial institutions. The Public Accountability Initiative recently produced a report detailing the funding for this pipeline project, entitled “The Power Behind the Pipeline“.

The proposed Northern Access Project consists of a 97-mile-long, 24” pipe that would carry Marcellus Shale gas from Sergeant Township (McKean County), PA, to the Porterville Compressor Station in the Town of Elma (Erie County), NY. Nearly 69% of the proposed main pipeline will be co-located in existing pipeline and power line rights-of-way, according to FERC. The agency says this will streamline the project and reduce the need to rely on eminent domain to most efficiently route the project.

A $42 million, 15,400 horsepower Hinsdale Compressor Station along the proposed pipeline route was completed in 2015. In addition to the pipeline itself, the proposed project includes:

  • Additional 5,350 HP compression at the existing Porterville Compressor Station, a ten-fold increase of the capacity of that station
  • A new 22,214 HP compressor station in Pendleton (Niagara County), NY
  • Two miles of pipeline in Pendleton (Niagara County), NY
  • A new natural gas dehydration facility in Wheatfield (Niagara County), NY
  • An interconnection with the Tennessee Gas Pipeline in Wales (Erie County), NY, as well as tie-ins in McKean, Allegany, and Cattaraugus counties
  • A metering, regulation and delivery station in Erie County
  • Mainline block valves in McKean, Allegany, Cattaraugus and Erie counties; and
  • Access roads and contractor/staging yards in McKean, Allegany, Cattaraugus and Erie counties

Map of Proposed Northern Access Project


View map fullscreen | How FracTracker maps work

The above map shows the proposed pipeline (green) and related infrastructure (bright pink). The pale yellow and pink lines on the map are the existing pipelines that the Northern Access Project would tie into. Click here to explore the map fullscreen.

Project Purpose

National Fuel maintains that the goal of the proposed project would be to supply multiple markets in Western New York State and the Midwest. The project would also supply gas for export to Canada via the Empire Pipeline system, and New York and New England through the Tennessee Gas Pipeline 200 Line. The company anticipates that the project would be completed by late 2017 or early 2018. Proponents are hoping that NAPL will keep fuel prices low, raise tax revenues, and create jobs.

Push-back against this project has been widespread from citizens and environmental groups, including Sierra Club and RiverKeeper. This is despite an environmental assessment ruling in July 2016 that FERC saw no negative environmental impacts of the project. FERC granted a stamp of approval for the project on February 4, 2017.

Concerns about the Proposed Pipeline

The Bufffalo-Niagara Riverkeeper, asserts that the project presents multiple threats to environmental health of the Upper Lake Erie and Niagara River Watersheds. In their letter to FERC, they disagreed with the Commission’s negative declaration that the project would result in “no significant impact to the environment.” The pipeline construction will require crossings of 77 intermittent and 60 perennial streams, 19 of which are classified by the New York State Department of Environmental Conservation (NYS DEC) as protected trout streams. Twenty-eight of the intermittent streams impacted also flow into these protected streams. Resulting water quality deterioration associated with bank destabilization, increased turbidity, erosion, thermal destabilization of streams, and habitat loss is likely to impact sensitive native brook trout and salamanders. Riverkeeper found that National Fuel’s plan on how to minimize impacts to hundreds of wetlands surround the project area was insufficient. FERC’s Environmental Assessment of the project indicated that approximately 1,800 acres of vegetation would affected by the project.

Several groups have also taken issue with the proposed project’s plan to use the “dry crossing” method of traversing waterways. Only three crossings will be accomplished using horizontal directional drilling under the stream bed — a method that would largely protect the pipes from dynamic movement of the stream during floods. The rest will be “trenched” less than 5 feet below the stream bed. Opponents of the project point out that NYSDEC, federal guidelines, and even industry itself discourage pipe trenching, because during times of high stream flow, stream scour may expose the pipes to rocks, trees, and other objects. This may lead to the pipes leaking, or even rupturing, impacting both the natural environment, and, potentially, the drinking water supply.

A December 2016 editorial to The Buffalo News addressed the impacts that the proposed Northern Access Project could have to the Cattaraugus Creek Basin Aquifer, the sole source of drinking water for 20,000 residents in surrounding Cattaraugus, Erie, and Wyoming counties in New York. In particular, because the aquifer is shallow, and even at the surface in some locations, it is particularly vulnerable to contamination. The editorial took issue with the absence of measures in the Environmental Assessment that could have explored how to protect the aquifer.

Other concerns include light and noise pollution, in addition to well-documented impacts on climate change, created by fugitive methane leakage from pipelines and compressors.

NYSDEC has held three public hearings about the project already: February 7th at Saint Bonaventure University (Allegany, NY), February 8th at Iroquois High School (Elma, NY), February 9th at Niagara County Community College (Sanborn, NY). The hearing at Saint Bonaventure was attended by nearly 250 people.

While FERC approved the project on February 4, 2017, the project still requires approvals from NYSDEC – including a Section 401 Water Quality Certification. These decisions have recently been pushed back from March 1 to April 7.

Proponents for the project – particularly the pipefitting industry – have emphasized that it would create up to 1,700 jobs during the construction period, and suggested that because of the experience level of the construction workforce, there would be no negative impacts on the streams. Other speakers emphasized National Fuel’s commitment to safety and environmental compliance.

Seneca Nation President Todd Gates expressed his concerns about the gas pipeline’s impacts on Cattaraugus Creek, which flows through Seneca Nation land (Cattaraugus Indian Reservation), and is downstream from several tributaries traversed by the proposed pipeline. In addition, closer to the southern border of New York State, the proposed pipeline cuts across tributaries to the Allegheny River, which flows through the Allegany Indian Reservation. One of New York State’s primary aquifers lies beneath the reservation. The closest that the proposed pipeline itself would pass about 12 miles from Seneca Nation Territory, so National Fuel was not required contact the residents there.

Concerns about Wheatfield dehydration facility & Pendleton compressor station

According to The Buffalo News, National Fuel has purchased 20 acres of land from the Tonawanda Sportsmen’s Club. The company is building two compressors on this property, totaling 22,000 HP, to move gas through two miles of pipeline that are also part of the proposed project, but 23 miles north of the primary stretch of newly constructed pipeline. Less than six miles east of the Pendleton compressor stations, a dehydration facility is also proposed. The purpose of this facility is to remove water vapor from the natural gas, in accordance with Canadian low-moisture standards. According to some reports from a National Fuel representative, the dehydration facility would run only a few days a year, but this claim, has not been officially confirmed.

Residents of both Pendleton and Wheatfield have rallied to express their concerns about both components of the project, citing potential impacts on public health, safety, and the environment relating to air and water quality.

Northern Access Project Next Steps

The deadline for public comment submission is 5 pm on February 24, 2017 — less than two weeks away. To file a comment, you can either email NYS DEC directly To Michael Higgins at NFGNA2016Project@dec.ny.gov, or send comments by mail to NYS DEC, Attn. Michael Higgins, Project Manager, 625 Broadway, 4th Floor, Albany, NY 12233.

 

Note: this article originally stated that the Porterville Compressor Station would double its capacity as a result of the NAPL project. In fact, the capacity increase would be ten-fold, from 600 hp to about 6000 hp. We regret this error.


by Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

You Are Here feature image

You Are Here!

Colonial Pipeline and site of Sept 2016 leak in Alabama

A Proper Picture of the Colonial Pipeline’s Past

On September 9, 2016 a pipeline leak was detected from the Colonial Pipeline by a mine inspector in Shelby County, Alabama. It is estimated to have spilled ~336,000 gallons of gasoline, resulting in the shutdown of a major part of America’s gasoline distribution system. As such, we thought it timely to provide some data and a map on the Colonial Pipeline Project.

Figure 1. Dynamic map of Colonial Pipeline route and related infrastructure

View Map Fullscreen | How Our Maps Work | The Sept. 2016 leak occurred in Shelby County, Alabama

Pipeline History

The Colonial Pipeline was built in 1963, with some segments dating back to at least 1954. Colonial carries gasoline and other refined petroleum projects throughout the South and Eastern U.S. – originating at Houston, Texas and terminating at the Port of New York and New Jersey. This ~5,000-mile pipeline travels through 12 states and the Gulf of Mexico at one point. According to available data, prior to the September 2016 incident for which the cause is still not known, roughly 113,382 gallons had been released from the Colonial Pipeline in 125 separate incidents since 2010 (Table 1).

Table 1. Reported Colonial Pipeline incident impacts by state, between 3/24/10 and 7/25/16

State Incidents (#) Barrels* Released Total Cost ($)
AL 10 91.49 2,718,683
GA 11 132.38 1,283,406
LA 23 86.05 1,002,379
MD 6 4.43 27,862
MS 6 27.36 299,738
NC 15 382.76 3,453,298
NJ 7 7.81 255,124
NY 2 27.71 88,426
PA 1 0.88 28,075
SC 9 1639.26 4,779,536
TN 2 90.2 1,326,300
TX 19 74.34 1,398,513
VA 14 134.89 15,153,471
Total** 125 2699.56 31,814,811
*1 Barrel = 42 U.S. Gallons

** The total amount of petroleum products spilled from the Colonial Pipeline in this time frame equates to roughly 113,382 gallons. This figure does not include the September 2016 spill of ~336,000 gallons.

Data source: PHMSA

Unfortunately, the Colonial Pipeline has also been the source of South Carolina’s largest pipeline spill. The incident occurred in 1996 near Fork Shoals, South Carolina and spilled nearly 1 million gallons of fuel into the Reedy River. The September 2016 spill has not reached any major waterways or protected ecological areas, to-date.

Additional Details

Owners of the pipeline include Koch Industries, South Korea’s National Pension Service and Kohlberg Kravis Roberts, Caisse de dépôt et placement du Québec, Royal Dutch Shell, and Industry Funds Management.

For more details about the Colonial Pipeline, see Table 2.

Table 2. Specifications of the Colonial and/or Intercontinental pipeline

Pipeline Segments 1,1118
Mileage (mi.)
Avg. Length 4.3
Max. Length 206
Total Length 4,774
Segment Flow Direction (# Segments)
Null 657
East 33
North 59
Northeast 202
Northwest 68
South 20
Southeast 30
Southwest 14
West 35
Segment Bi-Directional (# Segments)
Null 643
No 429
Yes 46
Segment Location
State Number Total Mileage Avg. Mileage Long Avg. PSI Avg. Diameter (in.)
Alabama 11 782 71 206 794 35
Georgia 8 266 33 75 772 27
Gulf of Mexico 437 522 1.2 77 50 1.4
Louisiana 189 737 3.9 27 413 11
Maryland 11 68 6.2 9 781 30
Mississippi 63 56 0.9 15 784 29
North Carolina 13 146 11.2 23 812 27
New Jersey 65 314 4.8 28 785 28
New York 2 6.4 3.2 6.4 800 26
Pennsylvania 72 415 5.8 17 925 22
South Carolina 6 119 19.9 55 783 28
Texas 209 1,004 4.8 33 429 10
Virginia 32 340 10.6 22 795 27
PSI = Pounds per square inch (pressure)

Data source: US EIA


By Sam Rubright, Ted Auch, and Matt Kelso – FracTracker Alliance

Energy-related story maps

Energy-Related Story Maps for Grades 6-10

Over the past half year, FracTracker staffer Karen Edelstein has been working with a New York State middle school teacher, Laurie Van Vleet, to develop a series of interdisciplinary, multimedia story maps addressing energy issues. The project is titled “Energy Decisions: Problem-Based Learning for Enhancing Student Motivation and Critical Thinking in Middle and High School Science.” It uses a combination of interactive maps generated by FracTracker, as well as websites, dynamic graphics, and video clips that challenge students to become both more informed about energy issues and climate change and more critical consumers of science media.

Edelstein and VanVleet have designed energy-related story maps on a range of topics. They are targeted at 6th through 8th grade general science, and also earth science students in the 8th and 10th grades. Story map modules include between 10 and 20 pages in the story map. Each module also includes additional student resources and worksheets for students that help direct their learning routes through the story maps. Topics range from a basic introduction to energy use, fossil fuels, renewable energy options, and climate change.

The modules are keyed to the New York State Intermediate Level Science Standards. VanVleet is partnering with Ithaca College-based Project Look Sharp in the development of materials that support media literacy and critical thinking in the classroom.

Explore each of the energy-related story maps using the links below:

Energy-related story maps

Screenshot from Energy Basics story map – Click to explore the live story map

This unique partnership between FracTracker, Project Look Sharp, and the Ithaca City School District received generous support from IPEI, the Ithaca Public Education Imitative. VanVleet will be piloting the materials this fall at Dewitt and Boynton Middle Schools in Ithaca, NY. After evaluating responses to the materials, they will be promoted throughout the district and beyond.

Karen Edelstein and her partner in Hawaii

Staff Spotlight: Karen Edelstein

As part of our staff spotlight series, learn more about Karen Edelstein and how her work through FracTracker has changed the course of drilling in New York State.

Time with FracTracker: I started with FracTracker in 2010 as a contract employee and then in 2012 started working 25 hours a week as a regular part-time staffer.

Education: M.P.S. in Environmental Management, and B.S. in Natural Resources, both from Cornell University

Office Location: Ithaca, NY

Title: Eastern Program Coordinator

What do you actually do in that role?

My job has changed a lot since I started working for FracTracker. I came to FracTracker when many New Yorkers were frantically learning as much as they could about unconventional drilling for natural gas, which at the time, appeared likely to start happening in the near future. Over a period of years, using credible public data, I have created dozens of maps on topics about geology, water withdrawals, waste transportation, hydrocarbon storage, and documenting the surging movements of public opposition to high-volume hydraulic fracturing for gas. The maps were informative to a wide range of decision-makers, environmental advocates, educators, and citizens.

Now, I’m working more broadly on projects up and down the East Coast. These projects include documenting controversies surrounding pipelines and other oil and gas infrastructure, and the public opposition to this development. I also support FracTracker’s mission to educate and report on the alternatives to fossil fuel infrastructure, and have been looking at renewable energy issues, as well.

Previous Positions and Organizations

Over the past 16 years, I’ve used geographic information systems in positions at numerous environmental and educational organizations, working for land trusts and other nonprofit agencies, secondary school teacher development programs, and county government agencies. Prior to that, I worked as a naturalist and environmental educator for ten years.

How did you first get involved working on oil and gas issues / fracking?

Karen Edelstein, August 2016

Karen Edelstein, FracTracker’s Eastern Program Coordinator

I live in a rural area of New York State that was in the cross-hairs of the oil and gas industry about 9 years ago. Landsmen were at the door asking me to lease my land, “thumper trucks” were pounding the roads trying to get seismic readings, and helicopters were overhead dropping bundles of equipment to conduct testing. Few people, including me, understood the enormity of what was going on. I joined a few community groups that wanted to know more.

Shortly after a multi-year work contract I had at a local college ended, in 2010, I met the (then small) staff of FracTracker at a public training event in Central New York. The organization had just been formed, and the presentation was all about mapping in Pennsylvania. I went right up to the director and told him how much we needed similar work in New York State, and I could be the person to do it! I started working part-time for FracTracker within the month.

What is one of the most impactful projects that you have been involved in with FracTracker?

Our map of New York State bans and moratoria on high volume hydraulic fracturing received a great deal of attention in the years leading up to the eventual statewide ban on the process. Over time, close to 200 municipalities enacted legislation. It was rewarding to document this visually through a progression of dozens of maps during that period. These maps of how municipality after municipality invoked New York State home rule provided important touchstones for community activists, too. In late 2014, in their announcement about the decision to ban HVHF in NYS, New York’s Health and Environment commissioners cited FracTracker’s map as an indication of patterns of strong ambivalence towards the process among state residents:

Together DEC’s proposed restrictions and local bans and moratoria total approximately 7.5 million acres, or about 63% of the resource. Here’s a summary of the local government restrictions and prohibitions. And the picture even gets cloudier. The practical impact of the Dryden decision I mentioned earlier is that even more acreage may be off-limits to HVHF drilling. Within the 4.5 million acres NOT excluded by the state or local restrictions, approximately 253 towns have zoning and 145 have no zoning. Each town with zoning would have to determine whether its current law restricts or even allows HVHF. So those towns without zoning would still have to decide whether to allow HVHF virtually anywhere or to prescribe where drilling could occur. The uncertainty about whether HVHF is an authorized use would undoubtedly result in additional litigation. It would also result in a patchwork of local land use rules which industry has claimed would utterly frustrate the rational development of the shale resource. Clearly the court’s decision shifted the battleground to town boards, to as evidenced by the conflicting claims of the opposing stakeholder groups. According to the Joint Landowners Coalition, many towns in the Southern Tier have passed resolutions favoring HVHF, while the online map from FracTracker.org indicates that many of the same towns are moving toward a ban. Indeed, our own informal outreach to towns in the Southern Tier confirms that even towns that support HVHF decisions are still up in the air. I’d say that the prospects for HVHF development in NY are uncertain, at best.

Events

Nothing Found

Sorry, no posts matched your criteria