Posts

Clearing land for shale gas pipeline in PA

Rapid Pipeline Development Affecting Pennsylvanians

In recent years, Pennsylvanians have had to endure numerous massive pipeline projects in the Commonwealth. Some of these, such as the Mariner East 2, the Revolution, and the Atlantic Sunrise, have been beset with continuous problems. In fact, both the Mariner East 2 and the Revolution projects had their operations suspended in 2018. The operators have struggled to grapple with a variety of issues – ranging from sinkholes near houses, erosion and sediment issues, hundreds of bentonite spills into the waters and upland areas of Pennsylvania, and more.

Part of the reason for the recent spate of incidents is the fact that so many pipelines are being built right now. These lines are traversing through undermined areas and land known to have underground karst formations, which are prone to subsidence and sinkholes. With more than 90,000 miles of pipelines and 84,000 miles of streams in Pennsylvania, substantial erosion and runoff issues are unfortunately quite common.

Map of pipeline routes in southwestern PA, various pipeline incidents, and karst formations:

Click here to learn more about recent pipeline incidents in Pennsylvania, along with how users of the FracTracker App have helped to chronicle problems associated with them.

Residents keeping track

Many residents have been trying to document issues in their region of Pennsylvania for a long time. Any pipeline incident should be reported to the Department of Environmental Protection (DEP), but in some instances, people want other residents to know and see what is going on, and submission to DEP does not allow for that. FracTracker’s Mobile App allow users to submit a detailed report, including photographs, which are shared with the public. App users have submitted more than 50 photographs of pipelines in Pennsylvania, including these images below.

The FracTracker Mobile App uses crowd-sourced data to document and map a notoriously nontransparent industry. App users can also report violations, spills, or whatever they find striking. For example, the first image shows construction of the Mariner East 2 in extreme proximity to high density housing. While regulators did approve this construction, and it is therefore not a violation, the app user wanted others to see the impact to nearby residents. Other photos do show incidents, such as the second photo on the second row, showing the sinkhole that appeared along the Mariner East 1 during the construction of the nearby Mariner East 2 pipeline.

Please note that app submissions are not currently shared with DEP, so if you happen to submit an incident on our app that you think they should know about, please contact their office, as well. The FracTracker Mobile App provides latitude and longitude coordinates to make it easier for regulators to find the issue in question.

Why have there been so many problems with pipelines in recent years? 

Drillers in Pennsylvania’s Marcellus Shale and other unconventional formations predicted that they would find a lot of natural gas, and they have been right about that. However, the large resulting supply of natural gas from this industrial-scaled drilling is more than the region can use. As a result, gas prices remain low, making drilling unprofitable in many cases, or keep profit margins very low in others.

The industry’s solution to this has been two-pronged. First, there is a massive effort underway to export the gas to other markets. Although there are already more than 2.5 million miles of natural gas pipelines in the United States, or more than 10 times the distance from the Earth to the Moon, it was apparently an insufficient network to achieve the desired outcome in commodity prices.  The long list of recent and proposed pipeline projects, complete with information about their status, can be downloaded from the Energy Information Administration (Excel format).

The industry’s other grand effort is to create demand for natural gas liquids (NGLs, mostly ethane, propane, and butane) that accompanies the methane produced in the southwestern portion of the state. The centerpiece of this plan is the construction of multiple ethane crackers, such as the one currently being built in Beaver County by Royal Dutch Shell, for the creation of a new plastics industry in northern Appalachia. These sites will be massive consumers of NGLs which will have to be piped in through pressurized hazardous liquid routes, and would presumably serve to lock in production of unconventional gas in the region for decades to come.

Are regulators doing enough to help prevent these pipeline development problems?

In 2010, the Pipeline and Hazardous Materials Safety Administration (PHMSA) led the formation of an advisory group called Pipelines and Informed Planning Alliance (PIPA), comprised mostly of industry and various state and local officials. Appendix D of their report includes a long list of activities that should not occur in pipeline rights-of-way, from all-terrain vehicle use to orchards to water wells. These activities could impact the structural integrity of the pipeline or impede the operator’s ability to promptly respond to an incident and excavate the pipe.

However, we find this list to be decidedly one-directional. While the document states that these activities should be restricted in the vicinity of pipelines, it does not infer that pipelines shouldn’t be constructed where the activities already occur:

This table should not be interpreted as guidance for the construction of new pipelines amongst existing land uses as they may require different considerations or limitations. Managing land use activities is a challenge for all stakeholders. Land use activities can contribute to the occurrence of a transmission pipeline incident and expose those working or living near a transmission pipeline to harm should an incident occur.

Pipeline being constructed near a home

While we understand the need to be flexible, and we certainly agree that every measure should be taken by those engaging in the dozens of use types listed in the PIPA report, it equally makes sense for the midstream industry to take its own advice, and refrain from building pipelines where these other land uses are already in place, as well. If a carport is disallowed because, “Access for transmission pipeline maintenance, inspection, and repair activities preclude this use,” then what possible excuse can there be to building pipelines adjacent to homes?

What distance is far enough away to escape catastrophic failure in the event of a pipeline fire or blast?

This chart shows varying hazard distances from natural gas pipelines, based on the pipe’s diameter and pressure. Source:  Mark J. Stephens, A Model for Sizing High Consequence Areas Associated with Natural Gas Pipelines

It turns out that it depends pretty dramatically on the diameter and pressure of the pipe, as well as the nature of the hydrocarbon being transported. A 2000 report estimates that it could be as little as a 150-foot radius for low-pressure 6-inch pipes carrying methane, whereas a 42-inch pipe at 1,400 pounds per square inch (psi) could be a threat to structures more than 1,000 feet away on either side of the pipeline. There is no way that the general public, or even local officials, could know the hazard zone for something so variable.

While contacting Pennsylvania One Call before any excavation is required, many people may not consider a large portion of the other use cases outlined in the PIPA document to be a risk, and therefore may not know to contact One Call. To that end, we think that hazard placards would be useful, not just at the placement of the pipeline itself, but along its calculated hazard zone, so that residents are aware of the underlying risks.

Valve spacing

If there is an incident, it is obviously critical for operators to be able to respond as quickly as possible. In most cases, a part of this process will be shutting off the flow at the nearest upstream valve, thereby stopping the flow of the hydrocarbons to the atmosphere in the case of a leak, and cutting the source of fuel in the event of a fire. Speed is only one factor in ameliorating the problem, however, with the spacing between shutoff valves being another important component.

Comprehensive datasets on pipeline valves are difficult to come by, but in FracTracker’s deep dive into the Falcon ethane pipeline project, which is proposed to supply the Shell ethane cracker facility under construction Beaver County, we see that there are 18 shutoff valves planned for the 97.5 mile route, or one per every 5.4 miles of pipe. We also know that the Falcon will operate at a maximum pressure of 1,440 psi, and has pipe diameters ranging from 10 to 16 inches. The amount of ethane that could escape is considerable, even if Shell were able to shut the flow off at the valve instantly. It stands to reason that more shutoff valves would serve to lessen the impact of releases or the severity of fires and explosions, by reducing the flow of fuel to impacted area.

Conclusion

Groups promoting the oil and gas industry like to speak of natural gas development as clean and safe, but unless we are comparing the industry to something else that is dirtier or more dangerous, these words are really just used to provoke an emotional response.  Even governmental agencies like PHMSA are using the rhetoric.

PHMSA’s mission is to protect people and the environment by advancing the safe transportation of energy and other hazardous materials that are essential to our daily lives.

If the safe transportation of hazardous materials sounds oxymoronic, it should.  Oil and gas, and related processed hydrocarbons, are inherently dangerous and polluting.

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 29 8 19 12 778 $6,769,061
Gas Transmission / Gathering 30 0 2 2 292 $51,048,027
Hazardous Liquids 49 0 0 1 48 $9,115,036
Grand Total 108 8 21 15 1,118 $66,932,124

Impacts of pipeline incidents in Pennsylvania from January 1, 2010 through July 13, 2018.  National totals for the same time include 5,308 incidents resulting  125 fatalities, 550 injuries, 283 explosions, and nearly $4 billion in property damage.

Current investments in large-scale transmission pipelines and those facilitating massive petrochemical facilities like ethane crackers are designed to lock Pennsylvania into decades of exposure to this hazardous industry, which will not only adversely the environment and the people who live here, but keep us stuck on old technology.  Innovations in renewable energy such as solar and wind will continue, and Pennsylvania’s impressive research and manufacturing capacity could make us well positioned to be a leader of that energy transformation.  But Pennsylvania needs to make that decision, and cease being champions of an industry that is hurting us.


By Matt Kelso, Manager of Data and Technology

This is the second article in a two-part series. Explore the first article: PA Pipelines and Pollution Events.

Pennsylvania Pipelines map by FracTracker Alliance

Pennsylvania Pipelines and Pollution Events

When people think about oil and gas extraction in Pennsylvania, they think about the tens of thousands of oil and gas wells in the state. It makes sense, because that’s where the process starts. However, while oil and other liquids can be shipped in tanker trucks, all of the producing gas wells in the state – whether they are small conventional wells or the giants of the Marcellus and Utica – must be connected by a network of pipelines.

Moving hydrocarbons from the well to processing facilities to power plants and residential customers all occurs within this giant midstream system, and the cumulative impact that pipelines have on the state is formidable. Let’s take a closer look at where the oil and gas pipelines are located in PA, their safety records, and major data gaps. Additionally, we’ve made available a detailed, interactive map of Pennsylvania pipelines and other important features such as water crossings.

Pipeline routes are everywhere in Pennsylvania

According to the Pipeline and Hazardous Materials Safety Administration (PHMSA), there were 92,407 miles of pipelines carrying natural gas and liquid petroleum products in Pennsylvania in 2017. That distance is equivalent to 151 round trips between Philadelphia and Pittsburgh on the Pennsylvania Turnpike, or more than three trips around the globe at the equator. This figure includes 78,022 miles of distribution lines (which takes gas from public utilities to consumers), 10,168 miles of transmission lines (which move gas between various processing facilities), 3,111 miles of petroleum liquid routes, and 1,105 miles of natural gas gathering lines (which take the gas from wells to midstream processing facilities).

Of note – The last category’s estimate is almost certainly a drastic underestimation. As of June 7th, there were 3,781 unconventional well pads in Pennsylvania, according the Pennsylvania Department of Environmental Protection (DEP), and all of the pads need to be connected to gathering lines. A 2014 report by the Nature Conservancy estimates that 19 acres of land are cleared for each well pad, which would work out to 3.1 miles of gathering lines for a typical 50-foot right-of-way. Multiplied out, 3,781 wells pads would require a total of 11,721 miles of gathering lines – well over PHMSA’s estimate of a 1,105 miles (See Table 1 for estimate comparisons).

Table 1. Varying estimates of gathering lines in Pennsylvania.*

Source

Unconventional Well Pads

Average Gathering Line Length (Miles) Statewide Total Estimated Miles
Nature Conservancy 3,781 3.1 11,721
Bradford County 3,781 3.5 13,234
PHMSA  3,781  0.3 1,105

*Estimates based on Nature Conservancy and Bradford County data are based on calculating the average length of segments, then multiplying by the number of well pads in the state to find the statewide total. The PHMSA estimate was calculated in reverse, by dividing the purported total of gathering lines by the number of well pads to find the average mileage.

Early map of gathering lines in Bradford County, PA by FracTracker (Pennsylvania Pipelines)

Figure 1: Location of gathering lines (2014) and oil and gas wells (2018) in Bradford County, Pennsylvania. Note the pockets of newer wells that are not connected to the older gathering line network.

In 2014, the FracTracker Alliance digitized a published map of gathering lines in Bradford County, allowing us to analyze the data spatially (Figure 2). These efforts yield similar results, with gathering lines averaging 3.5 miles in length. Not counting segments of transmission lines included in the data, such as Stagecoach, Sunoco, and Kinder Morgan’s Tennessee Gas Pipeline, there were 1,003 miles of gas gathering lines just in Bradford County in 2014.

Almost all of this data is based only on unconventional oil and gas activity, and therefore ignores the more than 96,000 conventional oil and gas (O&G) wells active in the state. We do not have a reasonable estimate on the average length of gathering line segments are for this network. It is reasonable to assume that they tend to be shorter, as conventional wells are often closer together than unconventional well pads, but they must still network across vast portions of the state.

Table 2. Estimated length of gathering lines for conventional wells in Pennsylvania by variable average lengths

Average Length (Miles) Conventional Wells Total Miles
0.5 96,143 48,072
1.0 96,143 96,143
1.5 96,143 144,215
2.0 96,143 192,286
2.5 96,143 240,358
3.0 96,143 288,429

If the average gathering line for conventional wells in Pennsylvania is at least 1 mile in length, then the total mileage of gathering lines would exceed all other types of gas and petroleum pipelines in the state. Conversely, for the PHMSA figure of 1,105 miles to be accurate, the average gathering line for all conventional wells and unconventional well pads in Pennsylvania would be 0.011 miles, or only about 58 feet long.

Pipelines are dangerous

As pipelines impact residents in many ways, there are numerous reason why communities should try to understand their impacts – including basic planning, property rights, sediment runoff into streams, to name a few. Perhaps the most significant reason, however, is the potential for harmful incidents to occur, which are more common than anyone would like to think (See Table 3). Some of these incidents are quite serious, too.

Table 3. Nationwide pipeline incidents statistics from PHMSA from January 1, 2010 through July 13, 2018

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 909 92 432 220 16,949 $348,511,528
Gas Transmission / Gathering 1,031 23 94 49 8,557 $1,085,396,867
Hazardous Liquids 3,368 10 24 14 2,467 $2,531,839,207
Grand Total 5,308 125 550 283 27,973 $3,965,747,602

As of the July 13, 2018 download date, the PHMSA report covers 3,116 days.

Incidents Per Day

This means that nationally per day there are 1.7 pipeline incidents, almost 9 people evacuated, and $1,272,704 in damages, including the loss of released hydrocarbons.

On average, there is a fatality every 25 days, an injury every six days, and an explosion every 11 days. The location of those explosions obviously has a lot to do with the casualty count and aggregate property damage.

How do Pennsylvania pipelines hold up? As one might expect from a state with so many pipelines, Pennsylvania’s share of these incidents are significant (See Table 4).

Table 4. Pennsylvania pipeline incidents statistics from PHMSA from January 1, 2010 through July 13, 2018

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 29 8 19 12 778 $6,769,061
Gas Transmission / Gathering 30 0 2 2 292 $51,048,027
Hazardous Liquids 49 0 0 1 48 $9,115,036
Grand Total 108 8 21 15 1,118 $66,932,124

Within Pennsylvania, an incident is reported to PHMSA every 29 days, an injury or fatality can be expected every 107 days, and the daily average of property damage is $21,480.

The issue with under-reported gathering lines notwithstanding, PHMSA lists Pennsylvania with 92,407 miles of combined gas and hazardous liquid pipelines, which is roughly 3.3% of the nationwide total, and there is no reason to believe that PHMSA’s issue with accounting for gathering lines is unique to the Keystone State.

Just 2% of the total number of incidents are in Pennsylvania. In terms of impacts, however, the state has seen more than its fair share – with 6.4% of fatalities, 3.8% of injuries, 5.3% of explosions, and 3.9% of evacuations. Property damage in Pennsylvania accounts for just 1.7% of the national total, making it the only category examined above for which its share of impacts is less than expected, based on total pipeline miles.

Pipeline location data not widely available

Pipeline data is published from a variety of public agencies, although almost none of it is really accessible or accurate.

For example the Department of Homeland Security (DHS) publishes a number of energy-related datasets. While they do not publish gas pipelines, they do have a 2012 dataset of natural gas liquid routes, which is a significant portion of the hazardous liquid inventory. From an analytical point of view, however, this dataset is essentially worthless. Many of these pipelines are so generalized that they don’t make a single bend for multiple counties, and the actual location of the routes can be miles from where the data are represented. Communities cannot use this as a tool to better understand how pipelines interact with places that are important to them, like schools, hospitals, and residential neighborhoods. The dataset is also incomplete – the original Mariner East natural gas pipeline, which has been around for decades, isn’t even included in the dataset.

Screenshot from PHMSA's public pipeline viewer

Figure 2: This text appears to viewers of PHMSA’s public pipeline viewer.

Another data source is PHMSA’s National Pipeline Mapping System Public Viewer. While this source is rich in content, it has several intentional limitations that thwart the ability of the public to accurately analyze the pipeline network and understand potential impacts:

  1. Data can only be accessed one county at a time, which is impractical for long interstate transmission routes,
  2. Data can not be be downloaded, and
  3. The on-screen representation of the routes disappears when users zoom in too far.

Within Pennsylvania, the Department of Environmental Protection (DEP) maintains the Pennsylvania Pipeline Portal, which contains a lot of information about various recent pipeline projects. However, with the sole exception of the Mariner East II project, the agency does not provide any geospatial data for the routes. The reason for this is explained on the Mariner East II page:

These shapefiles are the GIS data layers associated with the permits that have been submitted for the proposed pipeline project. These shapefiles are not required as part of a permit application and are not commonly submitted but were provided to the Department by Sunoco Pipeline, L.P.

The files were accepted by the Department to aid in the review of the application material given the large scale of the project. The shapefiles ease the review by displaying some information contained in the hardcopy of the plans and application in a different format.

The Department of Conservation and Natural Resources (DCNR) does make oil and gas infrastructure data available, including pipelines, where it occurs on state forest land.

Pennsylvania Pipelines Map

Considering the risks posed by pipelines, their proliferation in Pennsylvania, and this critical juncture in their development with an implicit opportunity to document impacts, FracTracker believes it is important now to develop an accurate interactive statewide map of these projects, fortify it with essential data layers, and facilitate citizen reporting of the problems that are occurring.

Other than the Mariner East II route and the state forest data available from DCNR, all of the pipeline routes on our Pennsylvania Pipeline Map, below, have been painstakingly digitized – either from paper maps, PDFs, or other digital media – to make geospatial data that can analyzed by interacting with other datasets. These layers are only as good as their sources, and may not be exact in some cases, but they are orders of magnitude better than data produced by public agencies such as DHS.

Figure 3: FracTracker’s Pennsylvania Pipeline Map. View fulll screen to explore map further, view water crossings, and other details not visible at the statewide map view.

Data Layers on Pennsylvania Pipelines Map

  • Incidents

    PHMSA incidents (7-13-2018). Pipeline incidents that were reported to the Pipeline and Hazardous Material Safety Administration. These reports contain significant information about the incidents, including location coordinates, and are shown on the map with white circles.

    Note that a few of the location coordinates appear to be erroneous, as two reports appear outside of the state boundary.

  • Spills

    Mariner East II – Inadvertent Returns (6-1-2018). This data layer shows inadvertent returns – or spills – related to the construction of the Mariner East II pipeline. This is a combination of two reports, including one where the spills that impacted waterways, and those categorized as upland spills. These are represented on the map by orange dots that vary in size depending on the amount of fluid that spilled. Some of the locations were provided as latitude / longitude coordinates, while others are estimates based on the description. In a few cases, the latitude value was adjusted to intersect the pipeline route. In each case, the adjusted location was in the correct county and municipality.

  • Water Crossings

    Known Stream & Wetland Crossings (2018). This shows the locations where the known pipeline routes intersect with streams and other wetlands on the National Wetland Inventory. These are organized by our four pipeline layers that follow, including FracTracker Vetted Pipelines (1,397 crossings), DCNR Pipelines (184 crossings), PHMSA Gas Pipelines (6,767 crossings), and Bradford County Gathering Lines (867 crossings). These crossings are shown as diamonds that match the colors of the four listed pipeline layers.

  • Vetted Pipelines

    FracTracker Vetted Pipelines (2018). This pipeline layer is an aggregation of pipeline routes that have been digitized in recent years. Much of this digitization was performed by the FracTracker Alliance, and it is an available layer on our mobile app. These are largely newer projects, and contain some routes, such as the Falcon Ethane Pipeline System, that have not been built yet. In some cases, multiple versions of the pipeline routes are printed, and we may not have the final version of the route in all circumstances. FracTracker Vetted Pipelines are represented with a red line.

  • DCNR Pipelines

    DCNR Pipelines (2018). This includes pipeline routes on state forest lands, and is shown as green lines on the map.

  • PHMSA Pipelines

    PHMSA Gas Pipelines (2018). This includes data digitized from the PHMSA Public Pipeline Viewer. This source contains gas and liquid pipelines, but only gas pipelines are included in this analysis. These routes are shown in a bright purplish pink color.

  • Bradford Lines

    Bradford County Gathering Lines (2014). This layer was digitized by the FracTracker Alliance after Bradford County published a printed map of gathering lines within the county in 2014. It is the only county in Pennsylvania that we have gathering line data for, and it is shown on the map as a yellow line.

  • Nearby Waterways

    Streams & Wetlands with 1/2 Mile of Pipelines (2018). This clipped layer of the National Wetlands Inventory is provided for visual reference of the wetlands near known pipeline routes. Due to the large amount of data, this layer is only visible when users zoom in to a scale of 1:500,000, or about the size of a large county.


By Matt Kelso, Manager of Data and Technology

This article is the first in a two-part series on Pennsylvania pipelines. Stay tuned!

ME2 pipeline and spills map by Kirk Jalbert

Mariner East 2 Drilling Fluid Spills – Updated Map and Analysis

Updated 8/2/17: An analysis by FracTracker and the Clean Air Council finds that approximately 202,000 gallons of drilling fluids have been accidentally released in 90 different spill events while constructing the Mariner East 2 pipeline in Pennsylvania. In a more recent update, FracTracker estimates these occurred at 42 distinct locations. Explore the map of these incidents below, which we have updated to reflect this growing total.

Last week, a judge with the PA Environmental Hearing Board granted a two week halt to horizontal directional drilling (HDD) operations pertaining to the construction of Sunoco Logistics’ Mariner East 2 (ME2) pipeline. The temporary injunction responds to a petition from the Clean Air Council, Mountain Watershed Association, and the Delaware Riverkeeper Network. It remains in effect until a full hearing on the petition occurs on August 7-9, 2017.

ME2 is a 350-mile long pipeline that, when complete, will carry 275,000 barrels of propane, ethane, butane, and other hydrocarbons per day from the shale gas fields of Western Pennsylvania to a petrochemical export terminal located on the Delaware River.

The petition relates to a complaint filed by the three groups detailing as many as 90 “inadvertent returns” (IRs) of drilling fluids and other drilling related spills along ME2’s construction route. IRs refer to incidents that occur during HDD operations in which drilling fluids consisting of water, bentonite clay, and some chemical mixtures used to lubricate the drill bit, come to the surface in unintended places. This can occur due to misdirected drilling, unanticipated underground fissures, or equipment failure.

What is Horizontal Directional Drilling?

An illustration of an “ideal” horizontal directional drilling boring operation is seen in the first graphic below (image source). The second image shows what happens when HDDs go wrong (image source).

hdd_crossing_example

hdd_ir

Mapping Inadvertent Returns

me2_ir_legendThe Pennsylvania Department of Environmental Protection (DEP) posted information on potential regulatory violations associated with these IRs on the PA Pipeline Portal website on July 24, 2017. This original file listed 49 spill locations. Our original map was based on those locations. As part of their legal filing, volunteer at the Clean Air Council (CAC) have parsed through DEP documents to discover 90 unique spills at these and other locations. On July 31, 2017, the DEP posted a new file that now lists 61 spills, which account for some of these discrepancies but not all.

Working with the CAC, we have created a map, seen below, of the 90 known IRs listed in the DEP documents and from CAC’s findings. Also on the map are the locations of all of ME2’s HDD boring locations, pumping stations, and workspaces, as well as all the streams, ponds, and wetlands listed in Sunoco’s permits as implicated in the project’s construction (see our prior article on ME2’s watershed implications here). Open the map full-screen to see many of these features and their more detailed information.

View map fullscreen | How FracTracker maps work

Analysis Results for ME2

From our analysis, we find that, conservatively, more than 202,000 gallons of drilling fluids have been accidentally released while constructing the Mariner East 2 pipeline in Pennsylvania since the first documented incident on May 3rd. We say conservatively because a number of incidents are still under investigation. In a few instances we may never know the full volume of the spills as only a fraction of the total drilling muds lost were recovered.

We analyzed where these 90 spills occurred relative to known HDD sites and estimate that there are 38 HDDs implicated in these accidents. An additional 11 spills were found at sites where the DEP’s data shows no HDDs, so we calculate the total number of “spill locations” at 42. A full breakdown by county and known gallons spilled at these locations is seen below.

County Number of IRs/Spills Gallons Spilled
Allegheny 4 2,050
Berks 3 540
Blair 3 2,400
Chester 4 205
Cumberland 32 162,330
Delaware 8 2,380
Huntingdon 1 300
Lancaster 7 5945
Lebanon 1 300
Washington 9 4,255
Westmoreland 17 21,532
York 1 25
Total 90 202,262

 

A few important notes on our methods and the available data we have to work with:

  1. CAC obtained spills from DEP incident reports, inadvertent return reports, and other documents describing spills of drilling fluid that have occurred during Mariner East 2 construction.  Those documents reflected incidents occurring between April 25, 2017 and June 17, 2017. In reviewing these documents, volunteers identified 61 discrete spills of drilling fluid, many of which happened at  similar locations. Unfortunately, separate coordinates and volumes were not provided for each spill.
  2. When coordinates were not provided, approximate locations of spills were assigned where appropriate, based on descriptions in the documentation. Two IRs have no known location information whatsoever. As such, they are not represented on the map.
  3. Spill volumes were reported as ranges when there was inconsistency in documentation regarding the same spill. The map circles represent the high-end estimates within these ranges. Of the 90 known spills, 29 have no volume data. These are represented on the map, but with a volume estimate of zero until more information is available.
  4. All documentation available to CAC regarding these spills was filed with the Environmental Hearing Board on July 19, 2017. DEP subsequently posted a table of inadvertent returns on its website on July 24, 2017.  Some of those spills were the same as ones already identified in documents CAC had reviewed, but 29 of the spills described on the DEP website were ones for which CCAC had never received documentation, although a subset of these are now listed in brief in the DEP spreadsheet posted on July 31, 2017. In total then, the documentation provided to CAC from DEP and spreadsheets on the DEP website describe at least 90 spills.

HDD Implications

The DEP’s press release assures the public that the drilling fluids are non-toxic and the IRs are “not expected to have any lasting effects on impacted waters of the commonwealth.” But this is not entirely the case. While the fluids themselves are not necessarily a public health threat, the release of drilling fluids into aquifers and drinking wells can make water unusable. This occurred in June in Chester County, for example.

More commonly, drilling fluid sediment in waterways can kill aquatic life due to the fine particulates associated with bentonite clay. Given that HDD is primarily used to lay pipe under streams, rivers, and ponds (as well as roads, parks, and other sensitive areas), this latter risk is a real concern. Such incidents have occurred in many of the instances cited in the DEP documents, including a release of drilling muds into a creek in Delaware County in May.

We hope the above map and summaries provide insights into the current risks associated with the project and levels of appropriate regulatory oversight, as well as for understanding the impacts associated with HDD, as it is often considered a benign aspect of pipeline construction.


By Kirk Jalbert, Manager of Community Based Research and Engagement, FracTracker Alliance

If you have any questions about the map on this page or the data used to create it, please contact Kirk Jalbert at jalbert@fractracker.org.

Mariner East Technical Difficulties map

Remaining Questions on Mariner East Technical Deficiencies

In the summer of 2015, Sunoco Logistics submitted applications to the Pennsylvania Department of Environmental Protection (DEP) to build its massive Mariner East 2 pipeline. The ME 2 pipeline would have the capacity to transport 275,000 barrels a day of propane, ethane, butane, and other hydrocarbons from the shale fields of Western Pennsylvania to the Marcus Hook export terminal, located on the Delaware River.

Sunoco’s applications were to satisfy the state’s Chapter 105 (water obstruction and encroachment) and Chapter 102 (erosion/sediment control and earth disturbance) permitting requirements. The DEP responded to Sunoco’s application, issuing 20 deficiency letters totaling more than 550 pages. Sunoco resubmitted their application in the summer of 2016 and the DEP again rejected many of its plans to disturb streams, ponds, and wetlands. In December, Sunoco resubmitted its revised application for a third time, hoping for final approval.

FracTracker Alliance first wrote about ME 2’s risks to watershed in August 2016, following Sunoco’s second application. Readers who want a general overview of the issues may find that article worth reading. In this new article, we dig deeper into the subject. Along with its December application, Sunoco also supplied the DEP with revised GIS files illustrating ME 2’s new route and documents summarizing its impacts to nearby water bodies. We have created a new map utilizing newly available data and provide contextual analysis valuable in determining how Sunoco responds to the DEP’s review of its prior rejected applications.

Detailed Mapping of Water Body Impacts

At the end of December, the DEP finally released Sunoco’s GIS files detailing water bodies that will be impacted by ME 2, as well as Sunoco’s data tables outlining alternative methods that might mitigate certain impacts. Our map (below) combines these new datasets to show the locations where ME 2’s route has changed since Sunoco’s initial application, presumably in response to the DEP’s technical deficiency letter.

Also on this map are water bodies: 1) implicated in ME 2’s environmental impact assessment, 2) determined by the DEP as likely impacted by construction, and 3) identified by Sunoco as having viable construction alternatives to mitigate impacts.

Mariner East 2 Technical Deficiencies Map


View map fullscreenHow FracTracker maps work

By viewing the map fullscreen and zooming in, one can click on a water feature to reveal its data tables (see below example). These tables contain information on the water body’s flow regime, the extent of permanent and temporary impacts, alternative crossing methods that could be used, and what benefits might come from those alternate methods. Also in the tables are a number of designations such as:

  • USGS Fish and Wildlife wetland classification (see guide). Most common are PEM (palustrine emergent wetland), PSS (palustrine scrub-shrub wetland), PFO (palustrine forested wetland), and PuB (palustrine unconsolidated bottom – i.e. ponds).
  • PA DEP stream designation (see guide). Most common are WWF (warm water fishes), CWF (cold water fishes), HQ (high quality), and EV (exceptional value).
  • PA Fish and Boat Commission classifications (see guide). Most common are ATW (approved trout water), STS (stocked trout stream), Class A (class A water), and WTS (wilderness trout stream).

An example water body data table that can be found on the map:
me2-zoom-screenshot2

Our analysis of this new data reveals the number of water crossings in question is significantly higher than what we estimated in August: now totaling 1,222 streams, 34 ponds, and 708 wetlands crossings. This increase is primarily due to Sunoco’s data also containing information on ephemeral and intermittent waters that are not typically accounted for in USGS data (all that was available at the time of our prior analysis).

Defining Impacts

The DEP’s Chapter 105 Joint Permit Application Instructions break down “impacts” into two broad categories: permanent and temporary. These are primarily used to assess environmental impact fees, but are also valuable in determining what parameters Sunoco will be held to during and after ME 2’s construction.

Permanent impacts: are “areas affected by a water obstruction or encroachment that consist of both direct and indirect impacts that result from the placement or construction of a water obstruction or encroachment and include areas necessary for the operation and maintenance of the water obstruction or encroachment located in, along or across, or projecting into a watercourse, floodway or body of water.”

Permanent impacts are calculated using the pipeline’s 50-foot permanent right-of-way. For streams, all bed and banks are to be restored to pre-construction conditions. For ponds and wetlands, permanent impacts are assumed to remain even if the area is considered restored.

Temporary impacts: are “areas affected during the construction of a water obstruction or encroachment that consists of both direct and indirect impacts located in, along or across, or projecting into a watercourse, floodway or body of water that are restored upon completion of construction.” Temporary impacts consist of areas such as temporary workspaces and access roads.

The below table lists the total impacted acres broken down by county. Of interest here is that more than 175 acres would be permanently impacted — equivalent to 134 football fields — with an additional 82 acres temporarily impacted.

Table 1. Impacted Acres by County

County Permanent Impacts (acres) Temporary Impacts (acre)
Allegheny 1.85 0.39
Berks 11.14 4.88
Blair 11.70 6.72
Cambria 20.21 8.48
Chester 10.30 3.92
Cumberland 24.06 7.61
Dauphin 8.12 6.55
Delaware 5.05 3.33
Huntingdon 18.75 8.04
Indiana 11.42 4.73
Juniata 5.25 3.02
Lancaster 4.65 1.66
Lebanon 6.48 2.53
Perry 5.58 2.63
Washington 9.37 2.94
Westmoreland 17.72 12.36
York 3.46 2.16
Total 175.12 81.93

Viable Options to Reduce Impacts

Example of an open cut wet crossing

An open cut wet crossing (image source)

Pipeline companies cross water bodies using a variety of methods depending on their classification. The DEP maintains three general categories for water crossings: minor (in streams less than or equal to 10 feet wide at the water’s edge at the time of construction), intermediate (perennial stream crossings greater than 10 feet wide but less than 100 feet wide at the water’s edge at the time of construction), and major (crossings of more than 100 feet at the water’s edge at the time of construction).

Minor and intermediate crossings often employ rudimentary trenching along “open cut” crossings where the water is either temporarily diverted (wet crossing) or allowed to flow during construction (wet crossing). After the cuts, the company attempts to repair damage done in the process of trenching.

In more sensitive places, such as in exceptional value streams, wetlands, and always in major crossings, a company uses conventional boring to tunnel under a water feature. When boring over long distances, such as under a lake or river, a company turns to Horizontal Directional Drilling (HDD), a more engineered form of boring. An example of HDD boring is seen below (image source):

hdd_crossing_example

We were surprised by the number of water crossings identified by Sunoco as having options to minimize impact. As the table below shows, more than 44% (869) of Sunoco’s crossings have an alternate method identified in the resubmitted applications. In most of these instances, the intended crossing method is either trenching through open cuts or dry crossings. The majority of identified alternatives would reduce impacts simply by altering the trenching route. 53 of the 869 were shown to have feasible conditions for conventional or HDD boring, but Sunoco categorized all of these as impracticable options despite their environmental benefits.

Table 2. Number of Crossings With and Without Viable Alternate Methods

Crossings Assessed but Unimpacted Impacted with No Alternative Impacted with Alternatives Total
Streams 313 925 297 1,535
Ponds 66 3 31 100
Wetlands 963 167 541 1,671
  1,342 1,095 869 3,306

Absorbing the Costs of Environmental Impacts

If executed, these alternative methods would decrease the length of crossings, limit right-of-way encroachments, prevent land fragmentation, and significantly reduce risks to larger water bodies. More likely, Sunoco will pay the impact fees associated with the less complicated crossing methods. We’ve summarized these fees (found in Sunoco’s resubmitted application) in the table below. In total, Sunoco would pay roughly $1.8 million in exchange for nearly 2,000 water body crossings – a fraction of the project’s $2.5 billion estimated cost:

Table 3. Impact Fees for Sunoco’s Preferred Crossings

County Permanent Impacts area (fees) Temporary Impact area (fees) Admin Fees Total Fees
Allegheny $15,200 $1,600 $1,750 $18,550
Berks $89,600 $19,600 $1,750 $110,950
Blair $94,400 $27,200 $1,750 $123,350
Cambria $162,400 $34,000 $1,750 $198,150
Chester $83,200 $16,000 $1,750 $100,950
Cumberland $192,800 $30,800 $1,750 $225,350
Dauphin $65,600 $26,400 $1,750 $93,750
Delaware $40,800 $13,600 $1,750 $56,150
Huntingdon $150,400 $32,400 $1,750 $184,550
Indiana $92,000 $19,200 $1,750 $112,950
Juniata $42,400 $12,400 $1,750 $56,550
Lancaster $37,600 $6,800 $1,750 $46,150
Lebanon $52,000 $10,400 $1,750 $64,150
Perry $44,800 $10,800 $1,750 $57,350
Washington $75,200 $12,000 $1,750 $88,950
Westmoreland $142,400 $50,000 $1,750 $194,150
York $28,000 $8,800 $1,750 $38,550
$1,408,800 $332,000 $29,750 $1,770,550

Conclusion

This week, acting DEP Secretary Patrick McDonnell met with residents who voiced frustration that the agency failed to provide an additional public comment period following Sunoco’s application resubmission. Nevertheless, the DEP is expected to greenlight Sunoco’s plans any day now, adding another to the list of recent pipeline approvals in the region. Sunoco needs its permits now in order to begin clearing trees prior to endangered species bat nesting season, which begins in April.

Meanwhile, communities along the pipeline’s path are preparing for the sudden wave of disruption that may ensue. Some have threatened lawsuits, arguing that the resubmitted application still contains many deficiencies including missing wetlands and private drinking wells that must be accounted for. Indeed, the map and data presented in this article confirms that there is still a lot that the general public does not know about ME 2 – in particular, the extent of water impacts the DEP seems willing to accept and the range of options at Sunoco’s disposal that might mitigate those impacts if it were forced to do so.

Finally, it is encouraging to see that the DEP is becoming more transparent in sharing datasets, compared to other pipeline projects. However, this data is complex and not easily understood without sufficient technical expertise. We are discouraged to think that it is unlikely the public will learn about additional changes to the construction plan until after permits are issued. In order for data to be useful, it must be made available throughout the process, not at the end stages of planning, and done so in a way that it becomes integrated into the agency’s public participation responsibilities.


by Kirk Jalbert, Manager of Community-Based Research & Engagement

Mariner East 2: At-Risk Schools and Populations

by Kirk Jalbert, Manager of Community-Based Research & Engagement
with technical assistance from Seth Kovnant

 

In September, the Pennsylvania Department of Environmental Protection (DEP) rejected a number of permits for wetland crossings and sedimentation control that were required for Sunoco Pipeline’s proposed “Mariner East 2” pipeline. According to Sunoco, the proposed Mariner East 2 is a $2.5 billion, 350-mile-long pipeline that would be one of the largest pipeline construction projects in Pennsylvania’s history.

If built, Mariner East 2 could transport up to 450,000 barrels (18,900,000 gallons) per day of propane, ethane, butane, and other liquefied hydrocarbons from the shale fields of western Pennsylvania to export terminals in Marcus Hook, located just outside Philadelphia. A second proposed pipeline, if constructed, could carry an additional 250,000 barrels (10,500,000 gallons) per day of these same materials. Sunoco submitted revised permit applications to PADEP on Tuesday, December 6th.

The industry often refers to ethane, propane and butane collectively as “natural gas liquids.” They are classified by the federal government as “hazardous, highly volatile liquids,” but that terminology is also misleading. These materials, which have not been transported through densely populated southeast Pennsylvania previously, are liquid only at very high pressure or extremely cold temperatures. At the normal atmospheric conditions experienced outside the pipeline, these materials volatilize into gas which is colorless; odorless; an asphyxiation hazard; heavier than air; and extremely flammable of explosive. This gas can travel downhill and downwind for long distances while remaining combustible. It can collect (and remain for long periods of time) in low-lying areas; and things as ordinary as a cell phone, a doorbell or a light switch are capable of providing an ignition source.

Many who have followed the proposed Mariner East 2 project note that, while much has been written about the likely environmental impacts, insufficient investigation has been conducted into safety risks to those who live, work and attend schools in the proposed pipeline’s path. We address these risks in this article, and, in doing so, emphasize the importance of regulatory agencies allowing public comments on the project’s resubmitted permit applications.

The Inherent Risks of Artificially Liquified Gas

Resident of Pennsylvania do not need to look far for examples of how pipeline accidents pose serious risk. For instance, the 2015 explosion of the Enterprise ATEX (Appalachia to Texas) pipeline near Follansbee, WV, provides a depiction of what a Mariner East 2 pipeline failure could look like. This 20-inch diameter pipeline carrying liquid ethane is similar in many ways to the proposed Mariner East 2. When it ruptured in rural West Virginia, close to the Pennsylvania border, it caused damage in an area that extended 2,000 feet—about ½ square mile—from the place where the pipeline failed.

In another recent instance, the Spectra Energy Texas Eastern methane natural gas pipeline ruptured in Salem, PA, this April as a result of corroded welding. The explosion, seen above (photo by PA NPR State Impact), completely destroyed a house 200ft. away. Another house, 800ft. away, sustained major damage and its owner received 3rd degree burns. These incidents are not unique. FracTracker’s recent analysis found that there have been 4,215 pipeline incidents nation-wide since 2010, resulting in 100 reported fatalities, 470 injuries, and property damage exceeding $3.4 billion (“incident” is an industry term meaning “a pipeline failure or inadvertent release of its contents.” It does not necessarily connote “a minor event”).

Calculating Immediate Ignition Impact Zones

It is difficult to predict the blast radius for materials like ethane, propane and butane. Methane, while highly flammable or explosive, is lighter than air and so tends to disperse upon release into the atmosphere. Highly volatile liquids like ethane, propane and butane, on the other hand, tend to concentrate close to the ground and to spread laterally downwind. A large, dispersed vapor cloud of these materials may quickly spread great distances, even under very light wind conditions. A worst-case scenario would by highly variable since gas migration and dispersion is dependent on topography, leak characteristics, and atmospheric conditions. In this scenario, unignited gas would be allowed to migrate as an unignited vapor cloud for a couple miles before finding an ignition source that causes an explosion that encompasses the entire covered area tracing back to the leak source. Ordinary devices like light switches or cell phones can serve as an ignition source for the entire vapor cloud. One subject matter expert recently testified before a Municipal Zoning Hearing board that damage could be expected at a distance of three miles from the source of a large scale release.

The federal government’s “potential impact radius” (PIR) formula, used for natural gas (methane) isn’t directly applicable because of differences in the characteristics of the material. It may however be possible to quantify an Immediate Ignition Impact Zone. This represents the explosion radius that could occur if ignition occurs BEFORE the gas is able to migrate.

The Pipeline and Hazardous Materials Safety Administration (PHMSA) provides instructions for calculating the PIR of a methane natural gas pipeline. The PIR estimates the range within which a potential failure could have significant impact on people or property. The PIR is established using the combustion energy and pipeline-specific fuel mass of methane to determine a blast radius: PIR = 0.69*sqrt(p*d^2). Where: PIR = Potential Impact Radius (in feet), p = maximum allowable operating pressure (in pounds per square inch), d = nominal pipeline diameter (in inches), and 0.69 is a constant applicable to natural gas

The Texas Eastern pipeline can use the PIR equation as-is since it carries methane natural gas. However, since Mariner East 2 is primarily carrying ethane, propane, and butane NGLs, the equation must be altered. Ethane, propane, butane, and methane have very similar combustion energies (about 50-55 MJ/kg). Therefore, the PIR equation can be updated for each NGL based on the mass density of the flow material as follows: PIR = 0.69*sqrt(r*p*d^2). Where: r = the density ratio of hydrocarbons with similar combustion energy to methane natural gas. At 1,440 psi, methane remains a gas with a mass density 5 times less than liquid ethane at the same pressure:

ME2 PIR table 1

The methane density relationships for ethane, propane, and butane can be used to calculate an immediate-ignition blast radius for each hydrocarbon product. The below table shows the results assuming a Mariner East 2-sized 20-inch diameter pipe operating at Mariner East 2’s 1,440psi maximum operating pressure:

ME2 PIR table 2

Using these assumptions, the blast radius can be derived as a function of pressure for each hydrocarbon for the same 20in. diameter pipe:

ME2 Immediate Ignition Blast Radius

ME2 Immediate Ignition Blast Radius

Note the sharp increase in blast radius for each natural gas liquid product. The pressure at which this sharp increase occurs corresponds with the critical pressure where each product transitions to a liquid state and becomes significantly denser, and in turn, contains more explosive power. These products will always be operated above their respective critical pressures when in transport, meaning their blast radius will be relatively constant, regardless of operating pressure.

Averaging the “Immediate Ignition Blast Radius” for ethane, propane, and butane gives us a 1,300 ft (about 0.25 mile) potential impact radius. However, we must recognize that this buffer represents a best case scenario in the event of a major pipeline accident.

Additional information on these calculations can be found in the Delaware County-based Middletown Coalition for Community Safety’s written testimony to the Pennsylvania Legistlature.

Living near the Mariner East 2

FracTracker has created a new map of the Mariner East 2 pipeline using a highly-detailed GIS shapefile recently supplied by the DEP. On this map, we identify a 0.5 mile radius “buffer” from Mariner East 2’s proposed route. We then located all public and private schools, environmental justice census tracts, and estimated number of people who live within this buffer in order to get a clearer picture of the pipeline’s hidden risks.

Proposed Mariner East 2  and At-Risk Schools and Populations

View map fullscreenHow FracTracker maps work

 

Populations at Risk

In order to estimate the number of people who live within this 0.5 mile radius, we first identified census blocks that intersect the hazardous buffer. Second, we calculated the percentage of that census block’s area that lies within the buffer. Finally, we used the ratio to determine the percentage of the block’s population that lies within the buffer. In total, there are an estimated 105,419 people living within the proposed Mariner East 2’s 0.5 mile radius impact zone. The totals for each of the 17 counties in Mariner East 2’s trajectory can be found in the interactive map. The top five counties with the greatest number of at-risk residents are:

  1. Chester County (31,632 residents in zone)
  2. Delaware County (17,791 residents in zone)
  3. Westmoreland County (11,183 residents in zone)
  4. Cumberland County (10,498 residents in zone)
  5. Berks County (7,644 residents in zone)

Environmental Justice Areas

Environmental justice designations are defined by the DEP as any census tract where 20% or more of the population lives in poverty and/or 30% or more of the population identifies as a minority. These numbers are based on data from the U.S. Census Bureau, last updated in 2010, and by the federal poverty guidelines. Mariner East 2 crosses through four environmental justice areas:

  • Census Tract 4064.02, Delaware County
  • Census Tract 125, Cambria County
  • Census Tract 8026, Westmoreland County
  • Census Tract 8028, Westmoreland County

DEP policies promise enhanced public participation opportunities in environmental justice communities during permitting processes for large development projects. No additional public participation opportunities were provided to these communities. Furthermore, no public hearings were held whatsoever in Cambria County and Delaware County. The hearing held in Westmoreland County took place in Youngwood, nine miles away from Jeanette. Pipelines are not specified on the “trigger list” that determines what permits receive additional scrutiny, however the policy does allow for “opt-in permits” if the DEP believes they warrant special consideration. One would assume that a proposed pipeline project with the potential to affect the safety of tens of thousands of Pennsylvanians qualifies for additional attention.

At-Risk Schools

One of the most concerning aspects of our findings is the astounding number of schools in the path of Mariner East 2. Based on data obtained from the U.S. Department of Education on the locations of schools in Pennsylvania, a shocking 23 public (common core) schools and 17 private schools were found within Mariner East 2’s 0.5 mile impact zone. In one instance, a school was discovered to be only 7 feet away from the pipeline’s intended path. Students and staff at these schools have virtually no chance to exercise their only possible response to a large scale release of highly volatile liquids, which is immediate on-foot evacuation.

me2-middletown-high

Middletown High School in Dauphin County in close proximity to ME2

One reason for the high number of at-risk schools is that Mariner East 2 is proposed to roughly follow the same right of way as an older pipeline built in the 1930s (now marketed by Sunoco as “Mariner East 1.”). A great deal of development has occurred since that time, including many new neighborhoods, businesses and public buildings. It is worth noting that the U.S. Department of Education’s data represents the center point of schools. In many cases, we found playgrounds and other school facilities were much closer to Mariner East 2, as can be seen in the above photograph. Also of note is the high percentage of students who qualify for free or reduced lunch programs at these schools, suggesting that many are located in disproportionately poorer communities.

 

Conclusion

Now that PADEP has received revised permit applications from Sunoco, presumably addressing September’s long list of technical deficiencies, the agency will soon make a decision as to whether or not additional public participation is required before approving the project. Given the findings in our analysis, it should be clear that the public must have an extended opportunity to review and comment on the proposed Mariner East 2. In fact, public participation was extremely helpful to DEP in the initial review process, providing technical and contextual information.

It is, furthermore, imperative that investigations into the potential impacts of Mariner East 2 extend to assess the safety of nearby residents and students, particularly in marginalized communities. Thus far, no indication has been made by the DEP that this will be the case. However, the Pennsylvania Sierra Club has established a petition for residents to voice their desire for a public comment period and additional hearings.

Seth Kovnat is the chief structural engineer for an aerospace engineering firm in Southeastern PA, and regularly consults with regard to the proposed Mariner East 2 pipeline. In November, Seth’s expertise in structural engineering and his extensive knowledge of piping and hazardous materials under pressure were instrumental in providing testimony at a Pennsylvania Senate and House Veterans Affairs and Emergency Preparedness Committee discussion during the Pennsylvania Pipeline Infrastructure Citizens Panel. Seth serves on the board of Middletown Coalition for Community Safety and is a member of the Mariner East 2 Safety Advisory Committee for Middletown Township, PA. He is committed to demonstrating diligence in gathering, truth sourcing, and evaluating technical information in pipeline safety matters in order to provide data driven information-sharing on a community level.

NOTE: This article was modified on 12/9/16 at 4pm to provide additional clarification on how the 1,300ft PIR was calculated.

Mariner East 2 Pipeline Route

Mariner East 2 and Watershed Risks

Mariner East 2 (ME 2) is a $2.5 billion, 350 mile-long pipeline that, if built, would be one of the largest pipeline construction projects in Pennsylvania’s history—carving a fifty-foot wide path through 17 counties. A project of Sunoco Logistics, ME 2 would have the capacity to transport 275,000 barrels a day of propane, ethane, butane, and other hydrocarbons from the shale fields of Western Pennsylvania and neighboring states to an international export terminal in Marcus Hook, located on the Delaware River.

ME 2 has sparked a range of responses from residents in Pennsylvania, however, including concerns about recent pipeline accidents, the ethics of taking land by eminent domain, and the unknown risks to sensitive ecosystems. Below we explore the watersheds that could be impacted by this proposed pipeline.

Watershed Impacts

While some components of Sunoco’s ME 2 proposal are approved, the project requires more permits from the Pennsylvania Department of Environmental Protection (DEP) before construction can begin. Among those are permits to build through and under stream and wetlands. Many of the waters threatened by ME 2 are designated by the Commonwealth as “exceptional value” (EV) or “high quality” (HQ) and are supposed to be given greater protections from harm. Water Obstruction and Encroachment Permits, also known as “Chapter 105” permits, are required for any building activities that would disrupt any body of water, including wetlands and streams. Sunoco applied for these so-called “Chapter 105” permits in the summer of 2015, but its applications were rejected as incomplete several times.

The below map shows the ME 2 route as of May 2016 relative to the watersheds and streams it will cross. Zoom into the map to see additional layers. Note that this is the most accurate representations of ME 2’s route we have seen to date. MWA provided the shapefiles for ME 2’s route to FracTracker Alliance and continues its investigations into potential watershed impacts.

Proposed ME 2 Route

View map full screen | How FracTracker maps work

In total, ME 2’s path will include 1,227 stream crossings, 570 wetland crossings, and 11 pond crossings. Of the 1,227 stream crossings, 19 are EV and 318 are HQ, meaning that 337 crossings will disturb what DEP refers to as “special protection” waters. In addition, there are 129 exceptional value wetlands being crossed. These numbers were compiled by Mountain Watershed Association (MWA) from Sunoco’s permitting applications. MWA also identified 2 HQ streams in Washington County, and 3 HQ streams in Blair County, that are proposed to be crossed that are not acknowledged as being HQ in Sunoco’s permits.

Public Comment Period Open

People living along the proposed route are sometimes in the best position to see what the route looks like from the ground, where wetlands and streams are, and what kinds of wetlands and streams they are. The DEP is accepting public comments on Sunoco’s ME 2 Ch. 105 permit application through Wednesday, August 24. Each DEP regional office receives separate Ch. 105 applications depending on where the pipeline routes through different counties. Those wishing to comment on the project can do so through the DEP regional office websites: DEP Southwest RegionDEP South-central Region, DEP Southeast Region. For guidance on how to write comments on permits, see MWA’s Pipeline Project Information & Talking Points.


We wish to thank Mountain Watershed Association and the Clean Air Council for helping us compile data and analysis for this article.

Written by Kirk Jalbert, PhD, MFA – Manager of Community-Based Research & Engagement, FracTracker Alliance