Posts

34 states with active drilling activity in US map

34 states have active oil & gas activity in U.S. based on 2016 analysis

Each year, FracTracker Alliance compiles a national well file to try to assess how many wells have been drilled in the U.S. We do this by extracting data from the various state regulatory agencies that oversee drilling in oil and gas producing states. We’re a little late posting the results of our 2016 analysis, but here it is.

Based on data from 2014-2015, 34 states * saw drilling activity, amounting to approximately 1.2 million facilities across the U.S. – from active production wells, to natural gas compressor stations, to processing plants.

The process we used to count these wells and related facilities for the 2016 analysis changed a bit this time around, which obviously impacts the total number of wells in the dataset. 2016’s compilation was created in consultation with Earthworks, for the purpose of informing the Oil and Gas Threat Map project. The scope was more restrictive than previous editions (see our 2014 and 2015 analyses), focusing only on wells that we were reasonably confident were actively producing oil and gas wells, thus excluding wells with inactive or uncertain statuses, as well salt water disposal (SWD) and other Class II injection (INJ) well types.

There are facilities included in this dataset that we don’t normally tally, as well (See Table 1 below). Earthworks was able to determine the latitude and longitude coordinates of a number of compressors and other processing plants, which are included in the dataset below and final map.

In all, the facility counts are reduced from about 1.7 million in 2015 to about 1.2 million in 2016, but this is more a reflection of the definition than substantial changes in the active well inventory in the U.S. You can explore this information by state, and additional results of this project, using Earthworks’ Threats Maps. Additionally, the national well file is available to download below.

You’ll notice that we don’t refer to the wells in this analysis as “fracked” wells. The primary reason for not using such terminology is because no one common definition exists across those states for what constitutes a hydraulically fractured well. In PA, for example, such wells are considered “unconventional” because drilling occurs in an unconventional formation and usually involves some sort of well stimulation. Contrastingly, in CA, often drillers use “acidizing” not fracking – a similar process that breaks up the ground using acidic injected fluids instead of the high pressure seen in traditional fracking. As such, we included all active oil and gas production instead of trying to limit the analysis to just wells that have been stimulated. We will likely continue to use this process until a federal or national definition of what constitutes a “fracked” well is determined.

Table 1. Facilities by State and Type

State Count of Facilities by Type Grand Total
Compressor Processor Well
AK 7 3,356 3,363
AL 17 7,016 7,033
AR 231 8 13,789 14,028
AZ 40 40
CA 7 21 92,737 92,765
CO 426 49 50,881 51,356
FL 2 102 104
ID 6 6
IL 5 48,748 48,753
IN 7,374 7,374
KS 9 90,526 90,535
KY 5 11,769 11,774
LA 6,486 94 2,555 9,135
MI 19 16,525 16,544
MO 2 687 689
MS 6 4,556 4,562
MT 5 9,768 9,773
ND 19 13,024 13,043
NE 1 16,202 16,203
NM 902 37 57,839 58,778
NV 176 176
NY 12,244 12,244
OH 29 10 90,288 90,327
OK 856 96 29,042 29,994
OR 56 56
PA 452 11 103,680 104,143
SD 408 408
TN 15,956 15,956
TX 758 315 397,776 398,849
UT 18 20,608 20,626
VA 9,888 9,888
WI 1 1
WV 20 16,118 16,138
WY 325 48 38,538 38,911
Grand Total 10,472 825 1,182,278 1,193,575
* NC facilities are not included because the state did not respond to multiple requests for the data. This exclusion likely does not significantly affect the total number of wells in the table, as historically NC only had 2 oil and gas wells.

Oil and Gas Wastes are Radioactive – and Lack Regulatory Oversight

Highlighting the maps of radioactive oil and gas exploration and production wastes created in collaboration with the Western Organization of Research Councils

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance
Scott Skokos, Western Organization of Research Councils

Oil and gas waste can be radioactive, but it is not considered “hazardous,” at least according to the federal government. In this article, we summarize several of the hazardous risks resulting from the current federal policy that fails to regulate this massive waste stream, and the gaps left by states. Of the six states mapped in this assessment, only the state of Montana has initiated any type of rule-making process to manage the waste.

When it comes to unconventional oil and gas waste streams:

Nobody can say how much of any type of waste is being produced, what it is, and where it’s ending up. – Nadia Steinzor, Earthworks

To address some of these gaps, FracTracker Alliance has been working with the Western Organization of Resources Councils (WORC) to map out exactly where radioactive oil and wastes are being dumped, stored, and injected into the ground for disposal. The work is an extension to WORC’s comprehensive No Time to Waste report.

Why is accurate waste data so hard to come by? The Earthworks report, Wasting Away explains that the U.S. EPA intentionally exempted oil and gas exploration and production wastes from the federal regulations known as the Resource Conservation and Recovery Act (RCRA) despite concluding that such wastes “contain a wide variety of hazardous constituents.” As a result, there is very little waste tracking and reporting of oil and gas waste data nationally.

State Waste Management Maps

Some data is available at the state level, so we at FracTracker have compiled, cleaned, and mapped what little data we could find.

State-specific maps have been created for Montana, North Dakota, Colorado, and Wyoming – see below:

ND Radioactive Waste mapNorth Dakota – View map fullscreen

co-radioactive-featureColorado – View map fullscreen

Sources of Radioactivity

When we hear about “radioactive waste” associated with the energy industry, nuclear power stations and fission reactors are usually what come to mind. But, as the EPA explains, fracking has transformed the nature of the oil and gas waste stream. Components of fracking waste differ from conventional oil and gas exploration and production wastes in a number of ways:

  • In general, the waste stream has additional hazardous components, and that transformation includes increased radioactivity.
  • Fracking has allowed for more intrusive drilling, penetrating deep sedimentary formations using millions of gallons of fluid.
  • Drilling deeper produces more drill cuttings.
  • The process of hydraulic fracking introduces millions more gallons of fluid into the ground that then return to the surface. These returns are ultimately contaminated and require disposal.
  • The formations targeted for unconventional development are mostly ancient seabeds still filled with salty “brines” known as “formation waters.”
  • In addition to the hazardous chemicals in the fracking fluid pumped into the wells for fracking, these unconventional formations contain larger amounts of heavy metals, carcinogens and other toxics. This also includes more radioisotopes such as Uranium, Thorium, Radium, Potassium-40, Lead-210, and Polonium-210 than the conventional formations that have supplied the majority of oil and gas prior to the shale boom.

A variety of waste products make up the waste stream of oil and gas development, and each is enhanced with naturally occurring radioactive materials (NORM). This waste stream must be treated and disposed of properly. All the oil and gas equipment – such as production equipment, processing equipment, produced water handing equipment, and waste management equipment – also need to be considered as sources of radioactive exposure.

Figure 1 below explains where the waste from fracking goes after it leaves the well pad.

Radioactive Oil and Gas Pathway Life Cycle

Figure 1. Breakdown of the radioactive oil and gas waste life-cycle

Three facets of the waste stream particularly enhanced with NORMs by fracking include scales, produced waters, and sludges.

A. Scales

When injected into the ground, fracking fluid mixes with formation waters, dissolving metals, radioisotopes and other inorganic compounds. Additionally the fracking liquids are often supplemented with strong acids to reduce “scaling” from precipitate build up (to prevent clogging up the well). Regardless, each oil well generates approximately 100 tons of radioactive scale annually. As each oil and gas reservoir is drained, the amount of scale increases. The EPA reports that lead-210 and polonium-210 are commonly found in scales along with their decay product radon at concentrations estimated to be anywhere from 480 picocuries per gram (pCi/g) to 400,000 pCi/g). Scale can be disposed of as a solid waste, or dissolved using “scale inhibitors.” These radioactive elements then end up in the liquid waste portion of the waste stream, known as produced waters.

B. Produced Waters

In California, strong acids are used to further dissolve formations to stimulate additional oil production. Acidic liquids are able to dissolve more inorganic elements and compounds such as radioisotopes. While uranium and thorium are not soluble in water, their radioactive decay products such as radium dissolve in the brines. The brines return to the surface as “produced water.” As the oil and gas in the formation are removed, much of what is pumped to the surface is formation water.

Consequently, declining oil and gas fields generate more produced water. The ratio of produced water to oil in conventional well was approximately 10 barrels of produced water per barrel of oil. According to the American Petroleum Institute (API), more than 18 billion barrels of waste fluids from oil and gas production are generated annually in the United States. There are several options for managing the liquid waste stream. The waste could be treated using waste treatment facilities, reinjected into other wells to enhance production (a cheaper option), or injected for disposal. Before disposal of the liquid portion, all the solids in the solution must be removed, resulting in a “sludge.”

C. Sludges

The U.S. EPA reports that conventional oil production alone produces 230,000 million tons – or five million ft3 (141 cubic meters) – of TENORM sludge each year. Unconventional processes produce much more sludge waste than conventional processes. The average concentration of radium in sludges is estimated to be 75 pCi/g, while the concentration of lead-210 can be over 27,000 pCi/g. Sludges present a high risk to the environment and a higher risk of exposure for people and other receptors in those environments because sludges are typically very water soluble.

Federal Exemptions

According to the EPA, “because the extraction process concentrates the naturally occurring radionuclides and exposes them to the surface environment and human contact, these wastes are classified as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM).” Despite the conclusions that oil and gas TENORM pose a risk to the environment and humans, the EPA exempts oil and gas exploration and production wastes from the definition of “hazardous” under Resource Conservation and Recovery Act (RCRA) law. In fact, most wastes from all of the U.S. fossil fuel energy industry, including coal-burning and natural gas, are exempt from the disposal standards that hazardous waste normally requires.

The Center for Public Integrity calls this radioactive waste stream “orphan waste,” because no single government agency is fully managing it.

Fortunately, the EPA has acknowledged that federal regulations are currently inadequate, though this is nothing new. A U.S. EPA report from the 1980’s reported as much, and gave explicit recommendations to address the issue. For 30 years nothing happened! Then in August, 2015, a coalition of environmental groups (including the Environmental Integrity ProjectNatural Resources Defense CouncilEarthworksResponsible Drilling AllianceWest Virginia Surface Owners’ Rights Organization, and the Center for Health, Environment and Justice) filed a lawsuit against the EPA, and has since reached a settlement.

Just last month (January 10, 2017) the U.S. EPA agreed to review federal regulations of oil and gas waste – a process they were meant to do every 3 years for the last 30 years. The EPA has until March 15, 2019, to determine whether or not regulatory changes are warranted for “wastes associated with the exploration, development, or production of crude oil, natural gas, or geothermal energy.” With the recent freeze on all U.S. EPA grants, however, it is not clear whether these regulations will receive the review they need.

State Regulations

Regulation of this waste stream is left up to the states, but most states do not require operators to manage the radioactivity in oil and gas wastes, either. Because of the federal RCRA exemptions most state policies ignore the radioactive issue altogether. Operators are free to dispose of the waste at any landfill facility, unless the landfill tells them otherwise. For detailed analyses of state policies, see pages 10-45 of the No Time to Waste report. FracTracker has also covered these issues in Pennsylvania and Ohio.

Another issue that screams for federal consideration of this waste stream is that states do not have the authority to determine whether or not the wastes can cross their borders. States also do not have the jurisdiction to decide whether or not facilities in their state can accept waste from across state lines. That determination is reserved for federal jurisdiction, and there are not any federal laws regulating such wastes. In fact, these wastes are strategically exempt from federal regulation for just these reasons.

Why can’t the waste be treated?

This type of industrial waste actually cannot be treated, at least not entirely. Unlike organic pollutants that can be broken down, inorganic constituents of the waste cannot be simply disintegrated out of existence. Inorganic components include heavy metals like arsenic and bromides, as well as radioactive isotopes of radium, lead, and uranium. Such elements will continue to emit radiation for hundreds-to-thousands of years. The best option available is to find a location to “isolate” and dispose of these wastes – a sacrifice zone.

Current management practices do their best to separate the liquid portions from the solid portions, but that’s about it. Each portion can then be disposed independently of each other. Liquids are injected into the ground, which is the cheapest option where it is available. If enough of the dissolved components (heavy metals, salts, and radioisotopes) can be removed, wastewaters are discharged into surface waters. The compounds and elements that are removed from the liquid waste stream are hyper-concentrated in the solid portion of the waste, described as “sludge” in the graphic above. This hazardous material can be disposed of in municipal or solid waste landfills if the state regulators do not require the radioactivity or toxicity of this material to be a consideration for disposal. There are not federal requirements, so unless there is a specific state policy regarding the disposal, it can end up almost anywhere with little oversight. These chemicals do not magically disappear. They never disappear.

Risks

There are multiple pathways for contamination from facilities that are not qualified to manage radioactive and hazardous wastes. At least seven different environmental pathways provide potential risks for human exposure. They include:

  1. Radon inhalation,
  2. External gamma exposure,
  3. Groundwater ingestion,
  4. Surface water ingestion,
  5. Dust inhalation,
  6. Food ingestion, and
  7. Skin beta exposure from particles containing the radioisotopes.

According to the EPA, the low-level radioactive materials in drilling waste present a definitive risk to those exposed. High risk examples include dust suppression and leaching. If dust is not continuously suppressed, radioactive materials in dust pose a risk to people at these facilities or those receptors or secondary pathways located downwind of the facilities. Radioactive leachate entering surface waters and groundwaters is also a significant threat. A major consideration is that radioactive waste can last in these landfills far longer than the engineered lifespans of landfills, particularly those that are not designed to retain hazardous wastes.

Cases of Contamination

North Dakota

In North Dakota, the epicenter of the Bakken Oil Fields, regulators were not ready for the massive waste streams that came from the fast growing oil fields. This  allowed thousands of wastewater disposal wells be drilled to dispose of salty wastewater without much oversight, and no places in state for companies to dispose of radioactive solid waste. Many of the wastewater disposal wells were drilled haphazardly, and as a result many contaminated surrounding farmland with wastewater. With regard to radioactive solid waste, the state until recently had a de facto ban on solid radioactive waste disposal due to their radioactivity limit being 5 picocuries per gram. The result of this de facto ban made it so companies either had to make one of two decisions: 1. Haul their radioactive solid waste above the limit out of state to facilities in Idaho or Colorado; or 2. Risk getting caught illegally dumping waste in municipal landfills or just plain illegal dumping in roadsides, buildings, or farmland.

In 2014, a massive illegal dumping site was discovered in Noonan, ND when North Dakota regulators found a gas station full of radioactive waste and filter socks (the socks used to filter out solid waste from wastewater, which contain high levels of radioactivity). Following the Noonan, ND incident North Dakota regulators and politicians began discussions regarding the need for new regulations to address radioactive solid waste.

In 2015, North Dakota moved to create rules for the disposal of solid radioactive waste. Its new regulations increase the radioactivity limit from 5 picocuries per gram to 50 picocuries per gram, and sets up new requirements for the permitting of waste facilities accepting radioactive waste and the disposal of radioactive waste in the waste facilities. Dakota Resource Council, a member group of WORC, challenged the rules in the courts, arguing the rules are not protective enough and that the agency responsible for the rules pushed through the rules without following the proper procedures. Currently the rules are not in effect until the litigation is settled.

Pennsylvania

In Pennsylvania, the hotbed of activity for Marcellus Shale gas extraction, the regulatory body was ill equipped and uninformed for dealing with the new massive waste stream when it first arrived on scene. Through 2013, the majority of wastewater was disposed of in commercial and municipal wastewater treatment facilities that discharge to surface waters. Numerous facilities engaged in this practice without amending their federal discharge permits to include this new waste stream.

Waste treatment facilities in Pennsylvania tried to make the waste streams less innocuous by diluting the concentrations of these hazardous pollutants. They did this by mixing the fracking wastes with other waste streams, including industrial discharges and municipal waste. Other specialized facilities also tried to remove these dissolved inorganic elements and filter them from the discharge stream.

As a result of site assessments by yours-truly and additional academic research, these facilities realized that such hazardous compounds do not simply dilute into receiving waters such as the Allegheny, Monongahela, and Ohio rivers. Instead, they partition (settle) into sediments where they are hyper-concentrated. As a result of the lawsuits that followed the research, entire river bottoms in Pennsylvania had to be entirely dug up, removed, and disposed of in hazardous waste landfills.

Action Plans Needed

Massive amounts of solid and liquid wastes are still generated during drilling exploration and production from the Marcellus Shale. There is so much waste, operators don’t know what to do with it. In Pennsylvania, there is not much they can do with it, but it is not just Pennsylvania. Throughout the Ohio River Valley, operators struggle to dispose of this incredibly large waste stream.

Ohio, West Virginia, and Pennsylvania have all learned that this waste should not be allowed to be discharged to surface waters even after treatment. So it goes to other states – those without production or the regulatory framework to manage the wastes. Like every phase of production in the oil and gas industry, operators (drillers) shop around for the lowest disposal costs. In Estill County, Kentucky, the State Energy and Environment Department just recently cited the disposal company Advance Disposal Services Blue Ridge Landfill for illegally dumping hydraulic fracturing waste. The waste had traveled from West Virginia Marcellus wells, and ended up at an ignorant or willfully negligent waste facility.

In summary, there is inadequate federal oversight of potentially hazardous waste coming from the oil and gas industry, and there are serious regulatory gaps within and between states. Data management practices, too, are lacking. How then, is the public health community supposed to assess the risk that the waste stream poses to people? Obviously, a more thorough action plan is needed to address this issue.


Feature image: Drill cuttings being prepared to be hauled away from the well pad. Photo by Bill Hughes, OVEC

Photo by David Nix 2015

Documenting Oil and Gas Industry Damage in North Dakota

North Dakota is now in its third oil boom due to the drilling technologies of horizontal drilling and hydraulic fracturing that have made once-inaccessible oil accessible. The Bakken formation covers western North Dakota, eastern Montana, and parts of Manitoba and Saskatchewan. At the height of the boom in 2014, just under 12,000 wells were active across the west, extracting 1.1 million barrels (bbl) of oil per day and flaring at 32%. The boom has bumped North Dakota to the second largest oil and gas producing state, second only to Texas.

Dakota Resource Council (DRC) is a member-led, grassroots organization that has been working in extraction-impacted communities in North Dakota since 1978. DRC’s members work on oil and gas campaigns that aim to eliminate impacts to land, air, water, and livelihoods of the citizens of North Dakota. Campaign issues on oil and gas industry damage include: flaring, pipelines, radioactive/oilfield waste, state accountability, and oil-by-rail.

The following photos from DRC show impacts of current and legacy oil and gas extraction in western North Dakota – an area in the heart of the Bakken that is historically a rich agricultural and ranching region. The vast contrast between the two industries are not complementary.

Bear Den Bay Incident

Fort Berthold Indian Reservation is the epicenter of fracking in the Bakken. On July 8, 2014 a wastewater pipeline rupture was accidentally discovered in rural Mandaree on the reservation. The pipeline is owned by Crestwood Midstream, LLC – a Texas-based company.

An estimated 1 million gallons of toxic saltwater ran down a ravine, ending up in the tributary of Bear Den Bay, which is located ¼ mile from the city of Mandaree’s water intake. The spill was contained, but the state doesn’t know exactly how much waste went into the bay. Tribal administration released a statement that beaver dams prevented the fluids from reaching the lake.

Weeks after the incident Crestwood released a statement saying:

… while assessment of the effect is ongoing, examination and testing to date show that an area of grass, brush and trees about 200 yards long sustained damage. Some produced water ran down a ravine into natural pools in a small stream at the bottom, but it appears that the produced water stopped there… The impact on fish and wildlife appears to have been minimal, in fact beavers, turtles, frogs, deer and pelicans have been seen returning to and re-inhabiting the impacted area.

To date, there has been no penalty for the damage that has been done to the land and reclamation is ongoing. Below are photos documenting the incident’s effects:

The Legacy of North Dakota Oil Booms

Western North Dakota has weathered through two previous oil booms in the early 1950’s and 1980’s. Previous booms left behind infrastructure that sits abandoned today. Due to hydraulic fracking technology, once-inaccessible oil is now accessible. These pre-existing wells are called legacy wells, that produce roughly 5% of North Dakota’s 1.2 million barrels per day.

Much of these wells contain infrastructure that has been in place for over 60 years. Pipelines have not been mapped or regulated in North Dakota until recently. Farmers are finding underground tanks and pipelines filled with toxic sludge. Just like previous oil booms, North Dakota was not prepared for the cost of extraction. Scroll through the following gallery showing a variety of legacy sites in ND.


By Nicole Donaghy, Dakota Resource Council

Bill Hughes giving tour to students in shale fields, WV

A Cross-Country Ride to Support Oil and Gas Tours in West Virginia

Bill Hughes giving tours of gas fields in West Virginia. Photo by Joe Solomon. https://flic.kr/s/aHskkXZj3z

Bill Hughes giving a tour of gas fields in West Virginia. Photo by Joe Solomon.

As many of you know, educating the public is a FracTracker Alliance core value – a passion, in fact. In addition to our maps and resources, we help to provide hands-on education, as well. The extraordinary Bill Hughes is a FracTracker partner who has spent decades “in the trenches” in West Virginia documenting fracking, well pad construction, water withdrawals, pipeline construction, accidents, spills, leaks, and various practices of the oil and gas industry. He regularly leads tours for college students, reporters, and other interested parties, showing them first-hand what these sites look, smell, and sound like.

While most of us have heard of fracking, few of us have seen it in action or how it has changed communities. The tours that Bill provides allow students and the like to experience in person what this kind of extraction means for the environment and for the residents who live near it.

Biking to Support FracTracker and Bill Hughes

Dave Weyant at the start of his cross-country bike trip in support of WV tours

Dave Weyant at the start of his cross-country Pedal for the Planet bike trip

In the classic spirit of non-profit organizations, we work in partnership with others whenever possible. Right now, as you read this posting, another extraordinary Friend of FracTracker, Dave Weyant (a high school teacher in San Mateo, CA), is finishing his cross-country cycling tour – from Virginia to Oregon in 70 days.

Dave believes strongly in the power of teaching to reach the hearts of students and shape their thinking about complicated issues. As such, he has dedicated his journey to raising money for FracTracker. He set up a GoFundMe campaign in conjunction with his epic adventure, and he will donate whatever he raises toward Bill’s educational tours.

Help us celebrate Dave Weyant’s courage, vision, and generosity – and support Bill Hughes’s tireless efforts to open eyes, evoke awareness, and foster communication about fracking – by visiting Dave’s GoFundMe page and making a donation. Every gift of any size is most welcome and deeply appreciated.

100% of the funds raised from this campaign will go to support Bill’s oil and gas tours in West Virginia. FracTracker Alliance is a registered 501(c)3 organization. Your contribution is tax deductible.

And to those of you who have already donated, thank you very much for your support!

South Belridge field by Sarah Leen, National Geographic

Trends in California’s Oil and Gas Development

By Kyle Ferrar, Western Program Coordinator

Over 38,000 oil and gas wells have likely been hydraulically fractured in California. The last permitted hydraulic fracturing operation in CA was approved in June 2015. Additionally, new aquifer exemption proposals will make it easier for operators to obtain hydraulic fracturing permits. One of the most interesting and troubling issues we found when analyzing the data on violations is that operators with the highest number of new well permits are also responsible for the majority of violations. In this article, we provide a look at these and other the trends of unconventional drilling in CA.

Updated CA Shale Viewer

First of all, the CA Shale Viewer has been updated! New data has been uploaded into the map about unconventional drilling in California, and new data resources have been used to identify shale gas activity (Fig. 1). Recent reports in CA have exposed what many researchers expected – hydraulic fracturing has been occurring in the state without any oversight or documentation for a long time.

In this presentation of the Updated CA Shale Viewer we showcase an analysis of these new data sources that better describe unconventional drilling in CA. We then look to new well permitting data to see what current spatial trends may mean for future oil and gas development. We also look at a sample of operator violations issued by the state regulatory agency to tell us a bit about who the bad actors may be.

Figure 1. CA Shale Viewer – Location of well stimulation & other unconventional oil & gas activity


View map fullscreen | How FracTracker maps work

Current Fracking Activity

Fracking in California has been put on hold at the moment as a result of low oil prices combined with the new permitting requirements for groundwater monitoring. In 2015, the CA Council on Science and Technology (CCST) released a report on hydraulic fracturing, as required by State Bill 4, proposed by Senator Pavley. The legislation required the Division of Oil, Gas and Geothermal Resources to create regulations for hydraulic fracturing and other stimulation activities such as acidizing. The report highlighted the necessity of protecting California’s groundwater resources. As another requirement of SB4, the state water resources control board adopted Model Criteria for Groundwater Monitoring in areas of Oil and Gas Well Stimulation, which includes three main components:

  1. Area-specific required groundwater monitoring near stimulation wells by operators
  2. Requirements for designated contractor sampling and testing
  3. Regional scale groundwater monitoring to be implemented by the State Water Board

With these requirements in place to protect groundwater, using hydraulic fracturing and other “extreme” high energy input techniques to extract oil is not currently economical in California. Operators have not submitted a permit application for hydraulic fracturing in CA since June 2015.

This status may change in the near future, though, as DOGGR has proposed groundwater monitoring exemptions for 3 large aquifer systems in Kern and Arroyo Grande counties. Such a proposal would mean that operators would not have to monitor for groundwater contamination in these areas when using hydraulic fracturing or other stimulation technologies like acidizing.

Previous Fracking Activity

One outcome of the aforementioned CCST report on hydraulic fracturing was a review of stimulation activity that has occurred in CA but went undocumented. Researchers at Lawrence Berkeley National Laboratory (LBNL) screened thousands of oil and gas well logs and records to calculate the extent to which hydraulic fracturing was actually being used in California’s oil fields. LBNL derived “Well Stimulation Treatment” probabilities based on the number of well records that reported utilizing hydraulic fracturing.

Probabilities were then derived for each pool, which is a geographically isolated formation within an oil field. Using these probabilities, FracTracker calculated a conservative estimate for the number of stimulated wells in the state at over 38,000. There are 228,010 unique Well ID’s listed in the DOGGR database. This puts the proportion of hydraulically fractured wells in California at 16.7% of the total 228,090 wells known.

New Wells

Whereas many other states break down their oil and gas data to show in what phase of development a well may be, CA identifies all wells between the permitted and producing/injecting phase as “new.” In Figure 2 below you can see the wells identified in 2016 as “new.” The DOGGR dataset shows there are currently 6,561 new wells in California as of July 2016. Counts of new well permits were calculated for individual operators and are listed below in Table 1.

Table 1. Top 10 operators according to new well permit counts in California, along with the number of new well permits currently active, the percent those permits represent of total new well permits in the state, and the percentage of violations the operator is responsible in the DOGGR dataset provided to FracTracker Alliance.

Order Operator Permit Count Permit % Violations %
1 Aera Energy LLC 2012 30.67% 22.34%
2 Chevron U.S.A. Inc. 968 14.75% 20.35%
3 California Resources Production Corporation 768 11.70% 5.89%
4 Linn Operating, Inc. 574 8.75% 12.04%
5 E & B Natural Resources Management Corporation 572 8.71% 1%
6 California Resources Elk Hills, LLC 374 5.70% 5.52%
7 Seneca Resources Corporation 185 2.82% 2.83%
8 Freeport-McMoRan Oil & Gas LLC 164 2.50% 15.22%
9 Vaquero Energy, Inc. 154 2.35% 0.22%
10 Macpherson Oil Company 116 1.77% 2.09%

There are 68 fields in CA that have added new wells in the new DOGGR dataset published in July 2016. The top 10 fields are listed in Table 2 below.

Table 2. Top 10 Oil Fields by Permit (New Well) Count

Order Oil Field Well Count
1 Belridge, South 1518
2 Midway-Sunset 903
3 Poso Creek 553
4 Lost Hills 488
5 Cymric 336
6 Kern River 294
7 Elk Hills 276
8 Kern Front 233
9 McKittrick 186
10 Belridge, North 174

In Figure 2 below, the counts of new wells in fields are shown in shades of yellow/red. The fields with the highest number of new wells are located in the Central Valley. The top 10 operators’ wells are also identified. The majority of new well permits are located in the South Belridge oil field, and the majority of those wells are operated by Aera Energy. As can be seen in the map, most new wells are located in fields in Kern county, but Santa Barbara and Fresno, and even Salinas counties have fields with 40 or more new well permits.

Figure 2. New Well Permitting Map of Unconventional Drilling in California


View map fullscreen | How FracTracker maps work

Violations

Who collects violations data?

In most states with heavy oil and gas drilling, data on violations is collected by the state regulatory agency, aggregated in datasets and spreadsheets, and made available to the public. FracTracker has done analyses with such data in the past.

In Pennsylvania for instance, a 2011 look at the data showed us that as the number of inspectors on the ground in the Marcellus Shale fields increases, the number of violations/well actually decrease. This was important information that challenged the cynical hypothesis: that more inspectors mean additional eyes on the ground to identify more violations during inspections. In reality, more inspectors actually mean that operators are held to higher standards, and further best management practices (BMPs) are employed. This trend at least seemed to be the case in Pennsylvania. As a regulatory agency, such knowledge is incredibly important, and even validates increased spending and budgets for more personnel.

In California, the issue of publishing violations data is again met with a similar response from the Division of Oil Gas and Geothermal Resources (DOGGR), specifically the “Oh, is that my job?” question.

How is it shared?

At FracTracker, we spent time working with regulatory officials at DOGGR to get some data on violations. We were informed that at some point in the future, the data may be aggregated and available digitally. Until then, however, a request for the data would have to be made to each of the six district offices individually and would take approximately a year to pull together scanned copies of violations notices in PDF format. Unfortunately, we at FracTracker do not have the capacity to process such files. Instead we asked for anything DOGGR had digitally available, and we were provided with a sample subset of 2,825 violations dating mostly from 2013 and 2014 and only in District 2, the Los Angeles Basin.

What does CA violations data look like?

Looking at the sample of data in Table 2, we see that the majority of violations are caused by the operators that also have the most new well permits. Aera Energy, in particular, is responsible for over 1/5 of all violations in our sample set. Limiting factors and sampling bias of the sample set of violations may impact this analysis, though, as all violations are limited to Los Angeles County.  Operators that mostly operate in the Central Valley will be under represented in the violations count. When more violations data becomes available we will be sure to expand this analysis.

Bans and Regulations on Unconventional Drilling in California

Although every state regulatory agency lambasts that they have the most comprehensive and conservative set of oil and gas extraction regulations, California regulators may actually be right. That is, save for New York which has banned hydraulic fracturing outright.

Regardless of the policy decisions made at the state-level, multiple local municipalities in CA have attempted to or succeeded in passing local bans. Six counties have passed outright bans on unconventional drilling in California, as can be seen in the FracTracker Local Actions map below (Fig. 3). Most recently the county of Alameda, home to the cities of Berkeley and Oakland, has passed a ban. The county of Monterey is also considering a ban on all oil and gas extraction, which has been approved as a local ballot initiative for November 2016.

Figure 3. Local Actions, Bans and Regulations Map


View map fullscreen | How FracTracker maps work

As the price of oil rebounds closer to $100/barrel, there will be more interest by operators to increase unconventional drilling in California. The addition of new aquifer exemptions will make it all the more appealing. These local movements are therefore incredibly important to ensure that “extreme” extraction methods like fracking don’t expand in the future.

Feature Photo: South Belridge field by Sarah Leen, National Geographic

Approaching 10K Unconventional Wells in PA

Approaching 10K Unconventional Wells in PA

By Matt Kelso, Manager of Data & Technology

Each state has its own definition of what it means for an oil or gas well to be “fracked.” In Pennsylvania, these wells are known as “unconventional,” a definition mostly based on the depth of the target formation:

An unconventional gas well is a well that is drilled into an unconventional formation, which is defined as a geologic shale formation below the base of the Elk Sandstone or its geologic equivalent where natural gas generally cannot be produced except by horizontal or vertical well bores stimulated by hydraulic fracturing.

The count of these unconventional wells in PA stands at 9,760 as of June 14, 2016. Their distribution is widespread across the state, but is particularly focused in the northeast and southwest corners of Pennsylvania.

Unconventional oil and gas wells in Pennsylvania:

View map full screen | How FracTracker maps work

Wells Drilled

The industry is not drilling at the same torrid pace as it was between 2010 and 2012, however. The busiest month for drill rigs in the Keystone State was August 2011, with 210 unconventional wells drilled. Last month, there were just 32 such wells.

Unconventional wells in PA: Unconventional oil and gas permits, wells, and violations in Pennsylvania by quarter. Data source: Pennsylvania DEP

Figure 1. Unconventional oil and gas permits, wells, and violations in Pennsylvania by quarter. Data source: Pennsylvania DEP

Permits

As Figure 1 captures, the number of permits issued per quarter is always greater than the number of wells drilled during the same time period. Even when drilling activity seems to be entering a bust phase, oil and gas operators continue to plan for future development. Altogether, there are 17,492 permitted locations, meaning there are about 7,700 permitted locations where drilling has not yet commenced.

Violations

The number of violations issued by DEP is generally follows the same trends as permits and wells. It is usually the smallest of the three numbers. In the first quarter of 2016, however, is one of a few instances on the chart above where the number of violations issued outpaced wells drilled. There could be any number of reasons for this anomaly; it could have been due to to unusual compliance issued in the field or aggressive regulatory blitzes. It could also be due to some other factor that can’t be determined by the available published data source.

Interestingly, this phenomenon has not occurred since the first quarter of 2010, when the industry was in full swing.

About VpW

One of the best ways to understand the impact of the industry is to look at violations per well (VpW). Unfortunately, there are a number of important caveats to that discussion. First of all, not all items that appear on the compliance report receive their own Violation ID number. It is clear from the DEP workload report that violations are tallied internally by the number of Violation ID numbers. This is as opposed to the number of items on the compliance report. As of June 14, 2016, there were 6,706 rows of data and 5,755 distinct Violation ID numbers that were issued to 2,080 different oil and gas wells. This discrepancy means that about 21% of unconventional wells are issued violations in Pennsylvania. Those that are cited receive an average of 2.8 to 3.2 violations per well, depending on how you count them.

Unconventional Wells in PA: Violations per well (VpW) of the 20 companies with the most unconventional wells in PA.

Table 1. Violations per well (VpW) of the 20 companies with the most unconventional wells in PA.

Determining the violations per well by operator comes with additional caveats. The drilled wells data comes from the spud report, which lists the current operator of each of the wells. The compliance report, however, lists the operator that was in charge of the well at the time of the infraction. This poses a problem for analysis, however. The ownership of the wells is quite fluid when taken in aggregate, as companies fold, are bought out, or change their names to something else.

VpW Results

We calculated VpW figures for the 20 operators with the largest inventory of drilled wells wells in Pennsylvania, found in Table 1. In some instances, we were able to reunite operators with violations that were issued under a different name but are in fact the same company. Specifically, we combined Rex Energy’s violations with RE Gas Dev, CONSOL violations with CNX, and Southwestern with SWN Productions, as the company is now known.

SWN’s violation-per-well score appears to be quite low. Their statistic, however, does not take into account wells that it purchased from Chesapeake in 2014, for example. In this transaction, 435 wells changed hands, with an unknown number of those in Pennsylvania. Any violations on these wells that Chesapeake had would stay with that company even as their well count was reduced. Such a change would thereby artificially inflate Chesapeake’s VpW score. On the other hand, SWN is now in possession of a number of wells which might have been problematic during the early stages of operation. Those violations, alternatively, are not associated with SWN, making their inventory of wells appear to be less problematic.

Data Caveats and Takeaways

Alas, we do not live in a world of perfect data. As such, these results must be taken with a grain of salt. Still, we can see that there are some trends that persist among operators that have been active in Pennsylvania for many years. Chief, Cabon, and EXCO, for example, all average more than one violation per well drilled. Chevron, CNX, and RE Gas Development, on the other hand, have much better rates of compliance, on the order of one violation per every five wells drilled.

26" oil/gas pipeline being installed in Maryland, 2016

An Introduction to Oil and Gas Pipelines

By: Wendy Fan, FracTracker Alliance Intern

North America consists of a vast network of inter- and intrastate pipelines that serve a vital role in transporting water, hazardous liquids, and raw materials. There is an estimated 2.6 million miles of pipelines in the nation, and it delivers trillions of cubic feet of natural gas and hundreds of billions of tons of liquid petroleum products each year. Because the pipeline network fuels the nation’s daily functions and livelihoods by delivering resources used for energy purposes, it is crucial to shed light on this transportation system. This article briefly discusses oil and gas pipelines, what they are, why they exist, their potential health and environmental impacts, proposed projects, and who oversees them.

What are pipelines, and what are they used for?

Oil and Gas Pipelines in ND

Pipelines in North Dakota. Photo credit: Kathryn Hilton

The pipeline network in the U.S. is a transportation system used to move goods and materials. Pipelines transport a variety of products such as sewage and water. However, the most common products transported are for energy purposes, which include natural gas, biofuels, and liquid petroleum. Pipelines exist throughout the country, and they vary by the goods transported, the size of the pipes, and the material used to make pipes.

While some pipelines are built above ground, the majority of pipelines in the U.S. are buried underground. Because oil and gas pipelines are well concealed from the public, most individuals are unaware of the existence of the vast network of pipelines.

Extent of U.S. Pipeline System

The United States has the most miles of pipelines than any other country, with 1,984,321 km (1,232,999 miles) in natural gas transport and 240,711 km (149,570 miles) in petroleum products. The country with the second most miles of pipelines is Russia with 163,872 km (101,825 miles), and then Canada with 100,000 km (62,137 miles).

Types of Oil and Gas Pipelines

There are two main categories of pipelines used to transport energy products: petroleum pipelines and natural gas pipelines.

  1. Petroleum pipelines transport crude oil or natural gas liquids, and there are three main types of petroleum pipelines involved in this process: gathering systems, crude oil pipeline systems, and refined products pipelines systems. The gathering pipeline systems gather the crude oil or natural gas liquid from the production wells. It is then transported with the crude oil pipeline system to a refinery. Once the petroleum is refined into products such as gasoline or kerosene, it is transported via the refined products pipeline systems to storage or distribution stations.
  2. Natural gas pipelines transport natural gas from stationary facilities such as gas wells or import/export facilities, and deliver to a variety of locations, such as homes or directly to other export facilities. This process also involves three different types of pipelines: gathering systems, transmission systems, and distribution systems. Similar to the petroleum gathering systems, the natural gas gathering pipeline system gathers the raw material from production wells. It is then transported with large lines of transmission pipelines that move natural gas from facilities to ports, refiners, and cities across the country. Lastly, the distribution systems consist of a network that distributes the product to homes and businesses. The two types of distribution systems are the main distribution line, which are larger lines that move products close to cities, and the service distribution lines, which are smaller lines that connect main lines into homes and businesses.

Right-of-Way (ROW)

Before pursuing plans to build new pipelines, a ROW needs to be secured from private and public landowners, which pipeline companies usually will pay for. ROW are easements that must be agreed and signed upon by both the landowner and pipeline company, and permits pipeline operators to go forth with installing and maintaining pipelines on that land. Pipeline operators can obtain ROW by purchasing the property or through a court-ordered procedure. ROW can be permanent or temporary acquisitions, and needs approval from FERC.

Regulatory Oversight

Depending on the type of pipeline, what it is transferring, what it is made of, and where it runs, there are various federal or state agencies that have jurisdiction over its regulatory affairs.

A. Federal Energy Regulatory Commission (FERC)

Interstate pipelines, those that either physically cross state boundaries or carry product that will cross state boundaries, are all permitted by the Federal Energy Regulatory Commission (FERC). The FERC is an independent organization within the U.S. Department of Energy that permits interstate electricity and natural gas infrastructure. The FERC’s authority lies within various acts of energy legislation, beginning with the Natural Gas Act of 1938 to the more recent Energy Policy Act of 2005. The U.S. President appoints its four commissioners. Other agencies such as the Dept. of Transportation, regional authorities such as the River Basin Commissions, and the Army Corps of Engineers may also be involved. FERC approves the location, construction, operation, and abandonment of interstate pipelines. They do not have jurisdiction over the siting of intrastate natural gas pipelines nor hazardous liquids.

B. Pipeline and Hazardous Materials Administration (PHMSA)

Under the U.S. Department of Transportation, the PHMSA oversees, develops, and enforces regulations to ensure the safe and environmentally sound pipeline transportation system. There are two offices within the PHMSA that fulfill these goals. The Office of Hazardous Materials Safety develops regulations and standards for classifying, handling, and packaging hazardous materials. The Office of Pipeline Safety develops regulations and risk management approaches to assure safe pipeline transportation, and ensures safety in the design, construction, operation and maintenance, and spill response of hazardous liquid and natural gas pipeline transportation. Below are some regulations enforced by PHMSA:

1. Pipeline Safety, Regulatory Certainty, and Job Creation Act of 2011 or Pipeline Safety Act 2011

This act reauthorizes PHMSA to continue with the examination and improvement of the pipeline safety regulations. It allows PHMSA to:

  • Provide the regulatory certainty necessary for pipeline owners and operators to plan infrastructure investments and create jobs
  • Improve pipeline transportation by strengthening enforcement of current laws and improving existing laws where necessary
  • Ensure a balanced regulatory approach to improving safety that applies cost-benefit principles
  • Protect and preserve Congressional authority by ensuring certain key rule-makings are not finalized until Congress has an opportunity to act

2. Federal Pipeline Safety Regulations: Public Awareness Programs

  • Enforced by PHMSA, the Public Awareness Program mandates that pipeline companies and operators to develop and implement public awareness programs that follow guidance provided by the American Petroleum Institute.
  • Under this regulation, pipeline operators must provide the public with information on how to recognize, respond, and report to pipeline emergencies.

3. Natural Gas Pipeline Safety Act of 1968

  • This act authorizes the Department of Transportation to regulate pipeline transportation of flammable, toxic, or corrosive natural gas, or other gases, as well as transportation and storage of liquefied natural gas.

The PHMSA also designed an interactive national pipeline mapping system for the public to access and utilize. However, the map can only be viewed one county at a time, it does not include distribution or gathering lines, and when you zoom in too far, the pipelines disappear. In fact, the site warns that the map should not be used to determine accurate locations of pipelines, stating that the locations can be incorrect by up to 500 ft. PHMSA argues that these restrictions exist in the interest of national security.

C. United States Army Corps of Engineers

Permits must be obtained from the U.S. Army Corps of Engineers if a pipeline is to be constructed through navigable bodies of water, including wetlands. State environmental regulatory agencies, such as PA’s Department of Environmental Protection, are also involved in the approval process of pipeline construction through waterways and wetlands.

Environmental Health and Safety Risks

Although pipeline transportation of natural gas and petroleum is considered safer and cheaper than ground transportation, pipeline failures, failing infrastructure, human error, and natural disasters can result in major pipeline disasters. As such, previous incidents have been shown to cause detrimental effects to the environment and the public’s safety.

A. Land Use and Forest Fragmentation

Columbia Pipeline

Construction staging area and the right-of-way of Columbia’s 26″ Pipeline. Photo credit: Sierra Shamer

In order to bury pipelines underground, an extensive amount of forest and land is cleared out to meet the pipe’s size capacity. States, such as Pennsylvania, that consist of rich ecosystem due to their abundance of forests, are at critical risk of diminishing habitats for plant species, and are at risk of the eradication of certain animal species. The U.S. Geological Survey (USGS) aimed to quantify the amount of land disturbance in Bradford and Washington counties in PA as a result of oil and gas activity including pipeline implementation. The USGS report concluded that pipeline construction was one of the highest sources of increasing forest patch numbers. Bradford County, PA had an increase of 306 patches, in which 235 were attributable to pipeline construction. Washington County increased by 1,000 patches, in which half was attributable to pipeline construction.

B. Compressor Stations

Compressor stations play an important role in processing and transporting the materials that pass through the pipeline. However, compressor stations present significant environmental health hazards. Even when the process of drilling and fracking is completed, compressor stations remain in the area to keep the gas in pipelines continually flowing. The stationary nature of this air pollution source means that a combination of pollutants such as volatile organic compounds (VOCs), nitrogen oxides (NOx), formaldehyde, and greenhouse gases are continually being released into the atmosphere. These pollutants are known to produce deleterious health impacts to the respiratory system, nervous system, or lung damage. In addition to pollutants emitted, the noise level generated by compressor stations can reach up to 100 decibels. The Center of Disease Control and Prevention (CDC) reports hearing loss can occur by listening to sounds at or above 85 decibels over an extended period of time.

C. Erosion and Sedimentation

Heavy rainfall or storms can lead to excessive soil disruption, in turn increasing opportunities for erosion and sedimentation to occur. Erosion can uncover pipelines buried underground, and rainfall of more than 5 inches (13 cm) can move or erode berms, and also disrupt mounds of soil used to protect against flooding. Soil erosion increases underground pipelines’ vulnerability to damage from scouring or washouts, and damage from debris, vehicles, or boats.

D. Eminent Domain

Eminent domain allows state or federal government bodies to exercise their power to take private property from residents or citizens for public use and development. In some cases, private companies have exercised power to seize land for their own profit. Owners of the property are then given a compensation in exchange for their land. However, landowners may end up spending more than they receive. In order to receive compensation, owners must hire their own appraiser and lawyer, and they are also not usually compensated for the full value of the land. Furthermore, property values decrease once pipelines are established on their land, making it more difficult to sell their home in the future.

E. Spills and Leaks

Poorly maintained and faulty pipelines that transport liquefied natural gas or crude oil may pose high health and environmental risks should the fluids spill or leak into the soil. Crude oil can contain more than 1,000 chemicals that are known carcinogen to humans, such as benzene. The release of the potentially toxic chemical or oil can infiltrate into the soil, exposing communities to fumes in the atmosphere as well as contaminating groundwater and surface water. Not only are the incidents costly to control and clean up, the chemical or oil spills can also have long lasting impacts to the environment and the public. A ruptured pipeline that leaked 33,000 gallons of crude oil in Salt Lake City, Utah in 2010 exposed residents in a nearby community to chemical fumes, causing them to experience drowsiness and lethargy. After being commissioned in 2010, the TransCanada Keystone Pipeline had reported 35 leaks and spills in its first year alone. In April 2016, the Keystone pipeline leaked 17,000 gallons of oil in South Dakota. Older pipelines are more likely to leak than newer ones, so this issue will only increase as pipeline infrastructure ages.

Natural gas pipelines have also been shown to leak methane, a major component in natural gas, at levels that far exceed what is estimated. Not only does methane contribute to climate change, it puts surrounding communities at risk of gas explosions, and exposes them to dangerously high levels of methane in the air they breathe.

F. Explosions

Pipeline sign Texas 2016

Pipeline warning sign in Texas. Photo credit: Ecologic Institute US

Explosions are also common with faulty pipelines that leak natural gas. Unlike oil or liquid spills, which generally spread and infiltrate into the soil, gas leaks can explode due to the hydrocarbon’s volatility. A recent pipeline explosion in Westmoreland County, PA, for example, caused a man to incur severe burns, as well as caused dozens of homes to be evacuated. Another pipeline explosion in San Bruno, California resulted in 8 people dead, 6 missing, and 58 injured. Thirty-eight homes were also destroyed and 70 others were damaged. This explosion exposed the haphazard system of record keeping for the tens of thousands of miles of gas pipelines, shoddy construction, and inspection practices.

Upcoming Proposed Projects

An estimated 4,600 miles of new interstate pipelines will be completed by 2018. Below are just a few major projects that are currently being proposed or are in the process of obtaining a permit.

A. Atlantic Sunrise Expansion Project

This pipeline will include 194 miles throughout the state of Pennsylvania. It will be constructed to cut through portions of 10 different PA counties, including Columbia, Lancaster, Lebanon, Luzerne, Northumberland, Schuylkill, Susquehanna, Wyoming, Clinton, and Lycoming. This project will require a 125-foot ROW, and will traverse through 52 areas designed as “protected land” in Pennsylvania. This proposed project is still in review by FERC – a decision is expected late 2016 or early 2017.

B. NEXUS Gas Transmission

Spectra Energy (Houston), DTE Energy (Detroit), and Enbridge Inc. (Canada) are partnering to build a $2 billion gas line that would travel from eastern Ohio to Michigan to Ontario. Already applied with FERC and will start construction early 2017. It proposed a 255-mile pipeline and will be 36-inch wide line.

C. Mariner East 2 Pipeline

This pipeline will expand the existing pipeline’s capacity from 70,000 barrels a day to 345,000. It has plans to deliver propane, butane, ethane, and other natural gas liquids across state to Delaware, Berks, and Lebanon counties in PA. Currently, the construction is delayed due to push back and permits acquisition.

D. Northeast Energy Direct (NED) Project

This project was intended to expand an existing pipeline by 420 miles from Susquehanna County, Pennsylvania and passing through New York, Massachusetts, New Hampshire, and Connecticut. Recently in April 2016, Kinder Morgan decided to suspend further development of this proposed pipeline.

E. Atlantic Coast Pipeline

The Atlantic Coast Pipeline had initial plans to establish 550 miles of pipeline from West Virginia to North Carolina, and to cut through dozens of Chesapeake headwater streams, two national forests, and across Appalachian Trail. Their permit to construct this pipeline was denied by the US Forest Service on January 2016; thus, delaying the project at the moment.

F. Algonquin Incremental Market (AIM) Project

With approval by FERC, Spectra Energy has begun 37 miles of pipeline construction through New York, Connecticut, and Massachusetts. The pipeline location is particularly worrisome because it is critically close to the Indian Point nuclear power plant. Ruptures or leaks from the pipeline can threaten the public’s safety, and even result in a power plant meltdown. Spectra Energy has also submitted two additional proposals: the Atlantic Bridge and Access Northeast. Both projects will expand the Algonquin pipeline to reach New England, and both are still in the approval process with FERC.

G. Constitution Pipeline

The Constitution pipeline had initially planned to include 124 miles from Susquehanna County, Pennsylvania to Schoharie County, New York, and was denied by NY State in April 2016.

To view the routes of proposed pipelines, visit FracTracker’s North American Pipeline and Oil and Gas Infrastructure Proposals map.

North America Proposed Oil and Gas Pipelines Map

Preview of North America proposed pipelines map. Click to view fullscreen.

Further Questions

Please email us at info@fractracker.org if there are any unanswered questions you would like us to answer or include.

Update: this article was edited on June 21, 2016 due to reader feedback and suggestions. 

2016 New FracTracker Logo

Welcome to FracTracker Alliance 2.0

By Brook Lenker, Executive Director, FracTracker Alliance

The understanding of fracking’s harms has grown dramatically in the last decade, especially since FracTracker’s formation in 2010. Across the country and around the world, environmental and human health impacts of oil and gas development have been well documented. Every day brings new cause for concern.

During this same period, scientific and public awareness about the consequences and causation of climate change has accelerated and we watch with trepidation as profound changes grip our planet. Atmospheric carbon dioxide levels have eclipsed 400 ppm. Temperature records are repeatedly broken. Weather extremes have become routine.

These tragic realities aren’t acceptable. Nationally and internationally, hundreds – if not thousands – of organizations are working on these issues and speaking out for transparency, accountability, and progress. Progress means informed populations, responsible policies, and an aggressive shift to renewable energy while embracing efficiency. Great things are happening. The future demands boldness.

FracTracker has always been a data-driven resource for all – to educate, empower, and catalyze positive change. The Alliance in our name underscores that we are an ally with the multitudes in that quest, but the weight of the times requires us to revisit our mission statement (below) and sharpen our message to better convey what we do and why we do it. A new logo and tagline reinforce our pronouncement.

FracTracker Alliance studies, maps, and communicates the risks of oil and gas development to protect the planet and support the renewable energy transformation.

So, welcome to the freshened words and appearance of the FracTracker Alliance. We’re the same trusted organization but striving to be bolder, to make a bigger difference for us all. The future is now.

New FracTracker Alliance 2.0 Logo without tagline


If you have questions about these organizational changes, please email us at info@fractracker.org, or call +1 202-630-6426.

Air Pollution in the Bay Area’s Refinery Corridor

Emissions from Refineries and other Sources
By
Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community Based Research & Engagement

Key Takeaways

  • Refineries and petrochemical industry in the Bay Area’s refinery corridor are responsible for the majority of the risk-driving point source emissions in this region.
  • The Chevron Richmond refinery has the largest refining capacity and emits the most hazardous air pollutants (HAPs).
  • The Tesoro refinery in Martinez and the Shell refinery in Martinez emit the most HAPs per barrel of oil (based on refining capacity).
  • The Valero refinery in Benicia, the Tesoro refinery in Martinez, and the Shell refinery in Martinez emit the most criteria air pollutants (CAPs).
  • If refineries increase their capacity and process more crude, the emissions of these various pollutants will invariably increase.
  • New emissions rules need to prioritize ambient air quality and hold the Air District and elected officials accountable for policies that increase risk.

Overview of the Bay Area’s Refinery Corridor

The Bay Area Air Quality Management District is revising the rules for facilities that emit a variety of hazardous pollutants into the air. The current draft of the new rules could actually increase the amount polluters are allowed to emit. The communities at risk are speaking out to support policies that would reduce the amount of air pollutants rather than increase the limits. In support of these communities, the FracTracker Alliance has focused on analyzing the sources of air pollutants in the region. The East Bay Oil Refinery Corridor is located along the North Shore of the East Bay, stretching from Richmond, CA east to Antioch, CA. The region has been named a “sacrifice zone” for the heavy concentration of petrochemical industrial sites. In addition to the five refineries along the north coast, these communities host a variety of other heavy industries and waste sites. The locations of these facilities have been mapped previously by the FracTracker Alliance, here. In the report we found that people of color, specifically African Americans, are disproportionately represented in the community demographics. Novel results indicate that Hispanic students may be disproportionately impacted by the presence of the petrochemical industry. In this post, we continue the analysis of risk in the region by providing an analysis of the contributions to air pollution from these facilities.

Regulations

Refineries and other sources of air pollution are regulated by the U.S. EPA’s Clean Air Act (CAA). The CAA regulates two classes of pollutants:

  1. Criteria air pollutants (CAPs) – including sulfur dioxide, oxides of nitrogen, carbon monoxide, and particulate matter; and
  2. Hazardous air pollutants (HAPs), which includes a list of 594 carcinogenic and non-carcinogenic chemicals that pose a risk to those exposed.

In addition, California regulates green-house-gas (GHG) emissions, and refineries are the second largest industrial source of GHGs. These regulations get applied when facilities need to obtain a permit for a new source of air pollution, or if a facility is making a structural change that could significantly affect emissions. Facilities are required to use “Maximum Available Control Technology” as it relates to industry best practices to control emissions. With these existing engineering controls, refinery emissions are released into the air from the multiple sources/processes shown below in Figure 1. Notice that a large amount of emissions are simply from “Leaks.”

Sources of Refinery HAPs

Figure 1. Breakdown of emissions from petroleum refineries (US EPA, 2011)

The new rules drafted by the BAAQMD to regulate emissions from the East Bay Oil Refinery Corridor would not cap emissions at any level. The current proposal outlines limits on emissions per barrel, promoting efficiency rather than focusing on emissions reductions. Air quality in the refinery corridor could be improved only if this approach was proposed in conjunction with emission limits or reductions. But as the currently proposed rules stand, emissions could actually increase. Enforcement procedures for infractions are also limited. If a refinery’s emissions violate the per barrel standards, the refinery has a whole 3 years to address the violation. Also, these new rules come at a time when refineries are moving to increase the volume of crude coming in from other regions, such as Canada’s tar sands and the Bakken Shale. These regions produce much lower “quality” crude oil, with much higher emissions. This all amounts to more air pollution rather than less.

Community and environmental activist groups such as the Communities for a Better Environment (CBE) and the Bay Area Refinery Corridor Coalition have raised specific issues with the proposed rules as they stand. First, they allow for increase emissions when Air District data forecasts increasing refinery emissions, despite declining local and domestic fuels demand. Refining the lower quality crude is more energy intensive, which also results in increased emissions. In order to offset the increased emissions, CBE reports that refineries can just increase total refining production to decrease per barrel averages. This would in affect increase emissions to meet regulatory requirements. In addition, transporting the crude via new shipping routes would put additional communities at elevated risk of railway accidents (CBE, 2015).

Ambient Air Quality

Air quality in the Bay Area has been continuously improving over the last few decades, but these refinery communities are still at a significantly higher risk of dying from heart disease and strokes. The largest disparity is felt by the African-American populations. Data for Richmond, CA shows they are 1.5 times more likely to die from these diseases than the Contra Costa county average (Casanova, Diemoz, Lifshay, McKetney, 2010). Emissions reductions not only favor the local communities such as the refinery corridor that are most impacted, but also all of the downwind communities, specifically the Central Valley. The Air District’s 2012 report of PM provides a summary of these trends. PM is an important because it is “the air pollutant that causes by far the greatest harm to public health in the bay area. It is a useful indices because there is a linear correlation between increasing ambient concentrations and mortality. Figure 2 shows the progress the Bay Area has made, overall. This graph is based on regional monitors and not those in the refinery communities, where improvements have not been as drastic. In Figure 3 below, the graph shows major pollutant drivers of seven health risks and how health impacts have been reduced over this time period. What we see from the bar graph, is that non-diesel anthropogenic point sources of PM contribute the most to risk for the majority of health endpoints considered. Across the entire bay area, refineries account for 6% of all PM (BAAQMD, 2012).

An overview of other chemicals associated with the petrochemical industry in ambient air and their resulting health effects are outlined in tables 1-3 below. This is by no means a comprehensive list, but these are chemicals of primary concern, specific to petroleum refinery emissions, and are known risk drivers for the region.

Fig 2 PM

Figure 2. Measurements of PM, averaged across the entire bay area, over time – showing an overall improvement in air quality.

Fig 3 health impacts

Figure 3. Contribution of different species of air pollution to health impacts. The analysis is specific to the bay area and compares health risks estimates from the past (1980s) to estimates in 2012.

Table 1. Health impacts from criteria air pollutants

Criteria Air Pollutants
Compound Health Effect
Sulfur Dioxide (SO2) and Oxides of Nitrogen (NOx) Array of adverse respiratory effects, airway inflammation in healthy people, increased respiratory symptoms in people with asthma
Carbon Monoxide (CO) Harmful health effects associated with the reduction of oxygen delivery to the body’s organs (heart and brain) and tissues
Particulate Matter Increased respiratory symptoms, irritation of the airways, coughing, or difficulty breathing, decreased lung function; aggravated asthma; development of chronic bronchitis; irregular heartbeat; nonfatal heart attacks; and premature death in people with heart or lung disease

Table 2. Health impacts from hazardous air pollutants known to be emitted from petroleum refineries

Hazardous Air Pollutants
Compound Acute Chronic
Benzene, Toluene, Ethylbenzene, Xylenes Neurological effects, Irritation of the eye, skin and respiratory tract Blood disorders (reduced number of red blood cells and aplastic anemia), cancer.
1,3-Butadiene Irritation of the eyes, throat and respiratory tract Cardiovascular effects, leukemia, cancer
Naphthalene Hemolytic anemia, damage to the liver, neurological effects Cataracts, damage to the retina, hemolytic anemia, cancer
PAHs Skin disorders, depression of the immune system Skin disorders (dermatitis, photosensitization), depression of the immune system, damage to the respiratory tract, cataracts, cancer

Table 3. Health impacts from other pollutants emitted from petroleum refineries

Other Pollutants
Compound Mechanism Health Effect
Volatile Organic Compounds (VOC) Combine with NOx in sunlight to create ozone Significantly reduce lung function and induce respiratory inflammation in normal. Healthy people during periods of moderate exercise, symptoms include chest pain, coughing, nausea, and pulmonary congestion
Greenhouse Gases (GHG), including Methane (CH4), Carbon Dioxide (CO2), Nitrous Oxide (N2O) Compounds with high global warming potential contribute to climate change Increase in average temperatures, higher levels of ground-level ozone, increased drought, harm to water resources, ecosystems and wildlife, health risk to sensitive populations

North Coast Emissions

With these gains in ambient air quality it is hard to fathom why regulators would consider allowing refineries to increase emissions inventories. For this analysis, the focus was to map and compare emissions inventories from numerous industrial sites, with a particular focus on the petroleum refineries.

Current refinery capacities as of 2014 are shown in Figure 4, below. The Richmond Chevron has the largest refining capacity in the region, by far. Refining capacity is the maximum amount of crude oil the refinery is allowed to refine, according to their permit. Refining capacity numbers are used in place of actual refined crude volumes for this analysis, because actual crude volumes are considered proprietary information and are not published by the California Energy Commission (CEC).

The Richmond refinery has a raw crude (atmospheric crude is the technical term) refinement capacity over twice as large as the Phillips 66 San Francisco Refinery, and almost 40% larger than the Tesoro (Golden Eagle) refinery, which is the second largest in the region. According to the newly proposed rules, this would allow the Richmond refinery to emit the most pollutants.

The raw total emissions data is shown in Figure 5. The Phillips 66 refinery in Rodeo contributes the least to ambient air quality degradation. The Chevron Richmond refinery processes 40 – 100% more than the four other refineries, and emits 10 – 570% more than the other refiners. This large difference in capacity and emissions means that Chevron Richmond is more efficient than some, but much less efficient than others. To understand the efficiency differences between the refineries, the total HAPs emissions were adjusted by the refining capacity, shown below in Figure 6. With this data we can rank the refining efficiency specifically for HAPs emissions, based on facility capacity. The Tesoro refinery in Martinez and the Shell refinery in Martinez emit the most HAPs per barrel oil (based on refining capacity). From highest emitter to lowest emitter per barrel of crude, the facilities can be ranked:

  1. Tesoro Refining & Marketing Co LLC (Golden Eagle Refinery in Martinez)
  2. Shell Oil Products (Martinez Refinery)
  3. Chevron Products Co Richmond Refinery
  4. Valero Refining Co – California Benicia Refinery
  5. Phillips 66 San Francisco Refinery (Rodeo Refinery)
fig 4 capacity

Figure 4. Operating capacity of refineries. The bars show the maximum amount of crude the refineries are allowed to process daily, in barrels (1 barrel = 42 gallons).

fig 5 total

Figure 5. Total amount of HAPs emissions from East Bay refineries

These refineries along with the other industrial sites in the region have been mapped below in Figure 7. The data has been displayed to show the HAPs emissions from these facilities. The amounts of emissions are shown with graduated circles. The larger the circle, the higher the emissions. The cumulative summation of HAPs is a good value for comparing between facilities with diverse emission inventories (the list of all species of emitted pollutants), but different HAP chemicals have very different effects, both in magnitude and in health impacts. Different chemicals will affect different body systems, as described above in Tables 1-3 above. We have therefore incorporated individual chemical data into the map as well (Figure 7, below). The data displayed shows the total sum of HAPs emitted (in lbs/year) from petrochemical industrial facilities in the region. Explore the map to see emission sources for a selection of important pollutants. Smaller industrial sites/sources have been left out of the map.

Figure 7. Map of the East Bay’s Refinery Corridor with emissions data

View Map Fullscreen | How Our Maps Work
If you open the map into its own page, you can toggle between individual chemical emissions from these facilities. Use the layers tab to change the chemicals displayed. For more information on the individual chemicals, continue reading below.

This unique selection of pollutants was chosen by identifying the highest health risk drivers in the region. They are known to increase both cancer and non-cancer risk for residents in the bay area. The graphs that follow show the emissions inventories reported by each refinery. The refineries are organized on the X –axis according to increasing refining capacity, as they are in Figure 4, above.

Analysis of the graphs show that the Richmond Chevron facility is a largely responsible for 1,2,4-trimethylbenzene, naphthalene, hydrogen cyanide, PAH’s, vanadium, lead and nickel compounds. The Tesoro refinery is mostly responsible for almost all of the 1,3-butadiene, and most responsible for hydrogen sulfide and VOCs. Shell is mostly responsible for the ethylbenzene, much of the mercury and sulfur dioxide emissions, and the most VOCs. Valero in Benicia is responsible for much of the 1,2,4-trimethylbenzene, all BTEX compounds, the most nickel compounds, and the most oxides of nitrogen. And finally, the Phillips 66 refinery in Rodeo with the lowest operating capacity also had the lowest emissions in almost every case except lead, which was very large compared to all refineries except Chevron Richmond. The Valero refinery in Benicia, the Tesoro refinery in Martinez, and the Shell refinery in Martinez emit the most criteria air pollutants (CAPs), including PM2.5 (particulate matter with a diameter less than 2.5 um), sulfur dioxide, and oxides of nitrogen.

Figure 8 – 22. Emissions totals of various air pollutants from East Bay refineries

Marine Terminals

Emissions from marine terminals are also a significant source of HAPs and particulate matter. In the map in Figure 7, the marine terminals are shown with yellow markers. Their relative contributions of total hazardous pollutants are much less than the refineries and other sources, but when we look at specific risk drivers, such as 1,3-butadiene and benzene, we find that their contributions are quite sizable. Marine terminals are also a key component for the refineries looking to access more low-grade crude. Increasing the refining capacity of the refinery will also increase the emissions from the terminals.

The Tesoro Golden Eagle Refinery in Martinez, CA was recently approved for a 30-year lease on a new marine terminal. The new terminal will allow Tesoro to switch to processing lower-cost, lower-quality crude oil from California, Bakken crude, and Canadian tar sands. When crude is transported via ocean liner, besides the issue of air pollution there is the additional risk of an ocean spill. Tom Griffith, Martinez resident and co-founder of the Martinez Environmental Group and founding member of the Bay Area Refinery Corridor Coalition recently summed up the threat, saying:

When you take a close look at what is going on in the marine oil terminals along the refinery corridor from Richmond to Stockton, it’s chilling to imagine what could happen if a huge oil tanker carrying tar sands crude crashed in the Bay! (Earthjustice, 2015)

Incidents

Chevron Fire 2012

Figure 23. Fires at Chevron Richmond Refinery 2012. Photo by John Sebastian Russo for the SF Chronicle

Like oil spills from tankers, there are other risks of industrial accidents for refineries that need to be considered. Accidents or incidents may occur that result in a sudden, large release of air pollution. Looking at the emissions data, the Richmond Chevron refinery with the largest production capacity may seem to be an efficient station compared to the other refineries. However, an explosion and large fire in 2012 there sent 15,000 community members to local hospitals with respiratory distress. The SF Chronicle’s coverage of the story can be found here. (Fire shown in photo right.) The incident resulted from pipes corroding and failing, and the facility failing to make the decision to shut down the process. The resulting plume of smoke is shown in the cover photo of this article. Other major explosions and fires have occurred in the recent past, as well, including a flaring incident in 2014, a fire in 2007, and two other explosion and fire events in 1999 and 1989.

Of course these events are not unique to the Chevron refinery. The Tesoro Golden Eagle refinery has a reputation of being the most dangerous refinery in the country for occupational hazards, and has one of the worst track records of violations.

Conclusions

If refineries increase their capacity and process more crude, the emissions of these various pollutants will invariably increase. Increased emissions elevate risk for surrounding communities, and in the bay area these communities already bare a disparate burden. Additionally, many of the pollutants will be transported with the prevailing wind that blows from the coast up the river delta and into the central valley. In FracTracker’s recent analysis of impacted communities in the refinery corridor, maps of air quality showed that the refinery communities are some of the most impacted in the entire bay area.

In addition, California’s Central Valley has some of the worst air quality in the U.S. Click here to view maps of state air quality of disproportionate impacts by us using CalEnviroScreen 2.0. While many of the HAPs have a greater local impact, others such as ozone have regional impacts, while others like mercury are transported globally.

What we find in this report is that the refineries and petrochemical industry in the refinery corridor are responsible for the majority of the risk-driving emissions in this region. When the risk and total emissions are averaged for the entire Bay Area, the risk outcomes are much less than for those living in the communities hosting the industries. New emissions rules should prioritize contributions of emissions to ambient air pollution loads. The biggest issue with using a “per barrel” emissions limit is that it prioritizes the refining capacity rather than mitigating the existing health impacts. These types of policy decisions deal directly with risk management. The Air Management District must decide what amount of cancer and disease are acceptable to keep the refineries in the communities. An upper limit on emissions makes it easier to set a risk limit, an upper bound for health impacts. The upper limit also holds the Air Management District and elected officials accountable for their policy decisions.

References

  1. U.S.EPA. 2011. Addressing Air Emissions from the Petroleum Refinery Sector U.S. EPA. Accessed 3/15/16.
  2. CBE. 2015. Playing It Safe: Supplemental comment on air district staff proposal, rules 12-15 and 12-16; Evidence of increasing bay area refinery GHG and pm2.5 emissions.. Communities for a Better Environment
  3. Casanova, D. Diemoz, L. Lifshay, J. McKetney, C. 2010. Community Heath Indicators for Contra Costa County. Community Health Assessment, Planning and Evaluation (CHAPE) Unit of Contra Costa Health Services’ Public Health division. Accessed 4/15/16.
  4. BAAQMD. 2012. Summary of PM Report. Bay Area Air Quality Management District. Accessed 4/15/16.

** Feature image of the Richmond Chevron Refinery courtesy of D.H. Parks