Posts

North American Pipeline Proposal Map

By Ted Auch, PhD – OH Program Coordinator, FracTracker Alliance

With all the focus on the existing TransCanada Keystone XL pipeline – as well as the primary expansion proposal recently rejected by Lancaster County, NB Judge Stephanie Stacy and more recently the Canadian National Energy Board’s approval of Enbridge’s Line 9 pipeline – we thought it would be good to generate a map that displays related proposals in the US and Canada.

North American Proposed Pipelines and Current Pipelines


To view the fullscreen version of this map along with a legend and more details, click on the arrows in the upper right hand corner of the map.

The map was last updated in October 2014.

Pipeline Incidents

The frequency and intensity of proposals and/or expansions of existing pipelines has increased in recent years to accompany the expansion of the shale gas boom in the Great Plains, Midwest, and the Athabasca Tar Sands in Alberta. This expansion of existing pipeline infrastructure and increased transport volume pressures has resulted in significant leakages in places like Marshall, MI along the Kalamazoo River and Mayflower, AR. Additionally, the demand for pipelines is rapidly outstripping supply – as can be seen from recent political pressure and headline-grabbing rail explosions in Lac-Mégantic, QC, Casselton, ND, Demopolis, AL, and Philadelphia.1 According to rail transport consultant Anthony Hatch, “Quebec shocked the industry…the consequences of any accident are rising.” This sentiment is ubiquitous in the US and north of the border, especially in Quebec where the sites, sounds, and casualties of Lac-Mégantic will not soon be forgotten.

Improving Safety Through Transparency

It is imperative that we begin to make pipeline data available to all manner of parties ex ante for planning purposes. The only source of pipeline data historically has been the EIA’s Pipeline Network. However, the last significant update to this data was 7/28/2011 – meaning much of the recent activity has been undocumented and/or mapped in any meaningful way. The EIA (and others) claims national security is a primary reason for the lack of data updates, but it could be argued that citizens’ right-to-know with respect to pending proposals outweighs such concerns – at least at the county or community level. There is no doubt that pipelines are magnets for attention, stretching from the nefarious to the curious. Our interest lies in filling a crucial and much requested data gap.

Metadata

Pipelines in the map above range from the larger Keystone and Bluegrass across PA, OH, and KY to smaller ones like the Rex Energy Seneca Extension in Southeast Ohio or the Addison Natural Gas Project in Vermont. In total the pipeline proposals presented herein are equivalent to 46% of EIA’s 34,133 pipeline segment inventory (Table 1).

Table 1. Pipeline segments (#), min/max length, total length, and mean length (miles).

Section

#

Min

Max

Mean

Sum

Bakken

34

18

560

140

4,774

MW East-West

68

5

1,056

300

20,398

Midwest to OK/TX

13

13

1,346

307

3,997

Great Lakes

5

32

1,515

707

3,535

TransCanada

3

612

2,626

1,341

4,021

Liquids Ventures

2

433

590

512

1,023

Alliance et al

3

439

584

527

1,580

Rocky Express

2

247

2,124

1,186

2,371

Overland Pass

6

66

1,685

639

3,839

TX Eastern

15

53

1,755

397

5,958

Keystone Laterals

4

32

917

505

2,020

Gulf Stream

2

541

621

581

1,162

Arbuckle ECHO

25

27

668

217

5,427

Sterling

9

42

793

313

2,817

West TX Gateway

13

1

759

142

1,852

SXL in PA and NY

15

48

461

191

2,864

New England

70

2

855

65

4,581

Spectra BC

9

11

699

302

2,714

Alliance et al

4

69

4,358

2,186

4,358

MarkWest

63

2

113

19

1,196

Mackenzie

46

3

2,551

190

8,745

Total

411

128

1,268

512

89,232

This is equivalent to 46% of the current hydrocarbon pipeline inventory in the US across the EIA’s inventory of 34,133 pipeline segments with a total length of 195,990 miles

The map depicts all of the following (Note: Updated quarterly or when notified of proposals by concerned citizens):

  1. All known North American pipeline proposals
  2. Those pipelines that have yet to be documented by the EIA’s Natural Gas Pipeline Network mapping team
  3. EIA documented pipelines more accurately mapped to the county level (i.e., select northeastern pipelines)
  4. The current Keystone XL pipeline and the Keystone XL expansion proposal rectified to the county level in Nebraska, South Dakota, Oklahoma, and Texas

We generated this map by importing JPEGs into ArcMAP 10.2, we then “Fit To Display”. Once this was accomplished we anchored the image (i.e., georeferenced) in place using a minimum of 10 control points (Note: All Root Mean Square (RMS) error reports are available upon request) and as many as 30-40. When JPEGs were overly distorted we then converted or sought out Portable Network Graphic (PNG) imagery to facilitate more accurate anchoring of imagery.

We will be updating this map periodically, and it should be noted that all layers are a priori aggregations of regional pipelines across the 4 categories above.

Imagery sources:

  1. Northeast – Long Island Sound, Montreal to Portland, Westchester, Spectra Energy Northeast, Maritime Northeast-Algonquin-Texas Eastern, Delaware River Watershed, Northeastern accuracy of existing EIA data, New England Kinder Morgan, Spectra Energy-Tennessee Gas Pipeline Company (TGP)-Portland Natural Gas Transmission System (PNGTS)
  2. Duluth to The Dakotas, NYMarc Pipeline, Mariner East, Millenium Pipeline Company, WBI Energy’s Bakken,
  3. British Columbia – Enbridge, Spectra/BG, Coastal, Tanker Route
  4. Midwest – ATEX and Bluegrass, BlueGrass, BlueGrass Pipeline,
  5. TransCanada/New England – Portland, Financial Post,
  6. Alaska Pipelines Historically
  7. Rail projects and primary transport
  8. Keystone Tar Sands – Canada (website no longer active), United States, Texas-Oklahoma
  9. Gulf Coast – Florida
  10. MarkWest Houston, Liberty, Liberty, Houston and Majorsville,
  11. Texas Oklahoma – Granite Wash Extension,
  12. Ohio – Spectra Energy, Enterprise Products, Kinder Morgan, Buckeye-Kinder Morgan-El Paso, Chesapeake Energy and AEP
  13. The Rockies Express Pipeline (REX)

Reference

1. Krauss, C, & Mouawad, J. (2014, January 25). Accidents Surge as Oil Industry Takes the Train, The New York Times.

 

Ohio Production and Injection Well Firms Map

Our latest Ohio-focused map shows the many companies involved in directional drilling in the state and the contact information for these firms.

Layer Descriptions

1. UNIVERSAL WELL SERVICES

Universal Well Services Inc. is a major firm involved in all manner of directional drilling services with an office in Wooster, OH, one in Allen, KY, six in Pennsylvania, six in Texas, and one in West Virginia

2. LLC & MLP’s

This is an inventory of 410 Ohio directional drilling affiliated LLC and MLP firms and contact information. Seventy-eight percent of these firms are domiciled in Ohio. The other primary states that house these firms are Pennsylvania (22), Texas (23), and West Virginia (9). The Economist wrote of these types of firms:

The move away from the C corporation began in earnest in 1975. Wyoming, that vibrant business hub, adopted a new entity structure, the limited-liability company (LLC). Imported from Panama, it provided the tax treatment of a partnership while preserving the corporate protection from individual liability for company debts and litigation. Other states followed in adopting the model. Businesses were quick to see the advantages. The various new types of firm that have risen in the wake of the LLC… make similar use of partnership structures. They have tended to be industry- or sector-specific, at least to begin with. The energy business has a lot of MLPs not only because it needs capital but because it is an easy place to set them up: since 1987, tax law has allowed “mineral or natural resource” companies to operate as listed partnerships, while withholding that privilege from others. But as with other pass-through structures, the constraints are being lowered and circumvented.

3. DRILLING FIRMS

This is an inventory of 393 Ohio Department of Natural Resources permitted directional and injection drilling firms with single locations and their contact information. Seventy-six percent of these firms are domiciled in Ohio with the other primary states of incorporation being Pennsylvania (15), Texas (14), Michigan (11), and West Virginia (9). Only 3 of these firms listed in the Ohio RBDMS Microsoft Access Database contained correct contact information or addresses. According to ODNR staff – and primary FOIA contact:

… it looks like the [active drillers] list [doesn’t contain] much information on the companies in general…We have mailing information for the operating companies, but a lot of the time they subcontract out to get their drillers. We do not require the information of the drillers they contract.

4. ADDITIONAL DRILLERS

This is an inventory of the 40 known locations for six firms permitted to drill in Ohio. The same lack of contact and address data for these firms were true for this data. The primary firms are Butch’s Rathole and Nomac Drilling Corporation. Given that the ODNR RBDMS does not indicate the actual location from which these companies migrated into the Ohio shale industry we decided to include all known locations for these firms.

5. CANADIAN FIRMS

This is an inventory of the 14 known locations for the 5 Canadian drilling firms permitted in Ohio. The primary firm is Savannah Drilling, which is composed of 10 locations across Alberta and Saskatchewan.

6. AMERICAN SUPPORTING CO.

This is an inventory of 1,837 Ohio energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion. Seventy-five percent (1,386) of these firms are domiciled in Ohio with secondary hotspots in Texas (76), West Virginia (65), Pennsylvania (49), Michigan (34), Colorado (27), Illinois (22), Oklahoma (21), California (16), New York and New Jersey (27), Kentucky (14).

7. ADDITIONAL SUPPORTING CO.

This shows an inventory of 10 Ohio energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion extracted from the ODNR RBDMS that did not contain locational or contact information.

8. CANADIAN SUPPORTING CO.

This is an inventory of 5 (1 company Mar Oil Company was not found) Canadian energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion.

9. BRINE HAULERS

This is an inventory of 505 ODNR permitted brine haulers active in the transport and disposal of hydraulic fracturing waste either via injection or waste landfill disposal. Seventy-six percent of these firms are domiciled in Ohio with the primary cities being Zanesville (18), Cambridge, Wooster, and Millersburg (12 each), Canton and Marietta (11 each), Columbus (9), Jefferson (9), Logan (8), and North Canton and Newark (7 each). Pennsylvania and West Virginia are home to 84 and 32 brine haulers, respectively.

Mapping California’s State Bill 4 (SB4) Well Stimulation Notices

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

Introduction

California passed State Bill 4 (SB4) in September, 2013 to develop and establish a regulatorySanta Barbara Channel_10.7.13 structure for unconventional resource extraction (hydraulic fracturing, acidizing, and other stimulation techniques) for the state.   As a feature of the current version of the regulations, oil and gas drilling/development operators are required to notify the California Department of Conservation’s Division of Oil Gas and Geothermal Resources (DOGGR), as well as neighboring property owners, 30 days prior to stimulating an oil or gas well.  In addition to property owners having the right to request baseline water sampling within the the following 20 days, DOGGR posts the well stimulation notices to their website.

Current State of Oil and Gas Production

The DOGGR dataset of well stimulation notices was downloaded, mapped, the dataset explored, and well-site proximity to certain sites of interest were evaluated using GIS techniques. First, the newest set of well stimulation notices, posted 1/17/14 were compared to a previous version of the same dataset, downloaded 12/27/13. When the two datasets are compared there are several distinct differences. The new dataset has an additional field identifying the date of permit approval and fields for latitude/longitude coordinates. This is an improvement, but there is much more data collected in the DOGGR stimulation notification forms that can be provided digitally in the dataset, including sources of water, amount of water used for stimulation, disposal methods, etc… An additional 60 wells have been added to the dataset, making the total count now 249 stimulation notices, with 37 stimulated by acid matrix (acidizing), 212 hydraulically fractured, and 3 by both. Of the 249, 59 look to be new wells as the API identifcation numbers are not listed in the DOGGR “AllWells.zip” database here, while 187 are reworks of existing wells. A difference of particular interest is the discrepancy in latitudes and longitudes listed for several well-sites. The largest discrepancy shows a difference of almost 10,000 feet for an Aera Energy well (API 3051341) approved for stimulation December 23, 2013. The majority of the well stimulations (246/249) are located in Kern County, and the remaining three are located in Ventura County.

Figure 1. Stimulation Notices and Past/Present Oil and Gas Wells
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Well Spacing

As can be seen in Figure 1, the well stimulations are planned for heavily developed oil and gas fields where hydraulic fracturing has been used by operators in the past. California is the 4th largest oil producing state in the nation, which means a high density of oil and gas wells. Many other states limit the amount of wells drilled in a set amount of space in support of safer development and extraction. In Ohio, unconventional wells (>4,000 foot depths) have a 1,000 foot spacing requirement , West Virginia has a 3,000 foot requirement for deep wells , and the Texas Railroad Commission has set a 1,200 foot well spacing requirement. Using Texas’s setback as an example buffer for analysis, 241/249 of the DOGGR new stimulations are within 1,200 feet of an active oil and gas well. Of the 364 hydraulically fractured oil and gas wells DOGGR has listed as “New” (they are not yet producing, but are permitted and may be in development), 351 are within 1,200 feet of a well identified in DOGGR’s database as an active oil and gas well. One of the industry promoted benefits of using stimulations such as hydraulic fracturing is the ability to decrease the number of well-sites necessary to extract resources and therefore decrease the surface impact of wells. This does not look to be the practice in California.

Environmental Media

Following this initial review of oil and gas production/development, three additional maps were created to visualize the environmental media threatened by contamination events such as fugitive emissions, spills or well-casing failures. The maps are focused on themes of freshwater resources, ambient air quality, and conservation areas.

Freshwater Resources

Figure 2. New Wells, Stimulation Notices and California’s Freshwater Resources
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Freshwater resources are limited in arid regions of California, and the state is currently suffering from the worst drought on record. In light of these issues, the FracMapper map “New Well Stimulations and California Freshwater Resources” includes map layers focused on groundwater withdrawals, groundwater availability, Class II wastewater injection wells, watershed basins, and the United States Geological Survey’s (USGS) National Hydrography Data-set (NHD). Since California does not have a buffer rule for streams and waterways, we used the setback regulation from Pennsylvania for an analysis of the proximity of the well stimulation notices to streams and rivers. In Pennsylvania, 300 feet is the minimum setback allowed for hydraulic fracturing near recognized surface waters. Of the 246 wells listed for new stimulation, 26 are within 300 feet of a waterway identified in the USGS’s NHD. The watersheds layer shows the drainage areas for these well locations. As a side note, the state of Colorado does not allow well-sites located within 100 year flood plains after the flash floods in September 2013 that caused over 890 barrels of oil condensates to be spilled into waterways. Also featured in Figure 2 are the predominant shallow aquifers in California. The current well stimulations posted by DOGGR are located in the Elk Hills (Occidental Inc.), Lost Hills (Chevron), Belridge and Ventura (both Aera Production) oil fields and have all exempted out of a groundwater monitoring plans based on aquifer exemptions, even though the aquifers are a source of irrigation for the neighboring agriculture.   Stimulation notices by Vintage Production in the Rose oil field, located in crop fields on farms, are accompanied by a groundwater and surface water monitoring plan. Take notice of the source water wells on the map that provide freshwater for both the acidizing and hydraulic fracturing operations and the Class II oil and gas wastewater injection wells that dispose of the produced waters. Produced wastewaters may also be injected into Class II enhanced oil recovery water flood wells, and several of the stimulation notices have indicated the use of produced waters for hydraulic fracturing.

Ambient Air Quality

Figure 3. California New Wells, Stimulation Notices and Air Quality
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Impacts to ambient air quality resulting from oil and gas fields employing stimulation techniques have been documented in areas like Wyoming’s Upper Green River Basin , the Uintah Basin of Utah , and the city of Dish, Texas . Typically, ozone is considered a summertime issue in urban environments, but the biggest threat to air quality in these regions has been elevated concentrations of ozone, particularly in the winter time. Ozone levels in these regions have been measured at concentrations higher than would typically be seen in Los Angeles or New York City. In Figure 3, the state and federal ozone attainment layers show that the areas with the highest concentrations of “new” wells and the DOGGR New Stimulation Notices do not pass ambient air criteria standards to qualify as “attainment” status for either state or federal ambient ozone compliance, meaning their ambient concentrations reach levels above health standards. Other air pollutants known to be released during oil and gas development, stimulation, and production include volatile organic compounds (VOCs) such as Benzene, Toluene, Ethylbenzene and xylene (BTEX); carbon monoxide (CO); hydrogen sulfide (H2S), Nitrogen Oxides (NOx), and sulfur dioxide (SO2), and methane (CH4), a potent greenhouse gas. It is important to point out that ground level ozone is not emitted directly but rather is created by chemical reactions between NOx and VOCs. Besides ozone, all these other air pollutants are in “attainment” in California except NOx in Los Angeles County. There have not been any stimulation notices posted in Los Angeles County, but the South Coast Air Quality Monitoring District identifies 662 recent wells that have been stimulated using hydraulic fracturing, acidizing, or gravel packing. See the Local Actions map of California for these well sites.

Conservation Areas

Figure 4. New Wells, Stimulation Notices and Conservation Areas
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

The map in Figure 4, “New Well Stimulations and Conservation Lands”, features land use planning maps developed by California and Federal agencies for conservation of the environment for multiple uses, ranging from recreation to farming and agriculture.  Many of the Stimulation Notices as well as “new” well sites located in Kern County are located in or along the boundary of the San Joaquin Valley Conservation Opportunity; land identified by the California Department of Fish and Game, Parks and Recreations, and Transportation (Caltrans) as important for wildlife connectivity. Oil and gas development inevitably results in loss of habitat for native species. Habitat disturbance and fragmentation of the natural ecosystems can pose risks particularly for endangered species like the San Joaquin Kit Fox, California Condor, and the blunt-nosed leopard lizards.

The California Rangeland Priority Conservation Areas layer was created to identify the most important areas for priority efforts to conserve the Oak Savannah grasslands of high diversity that host many grassland birds, native plants, and threatened vernal pool species. The areas of high biodiversity value are marked in red as “critical conservation areas”. The majority of the new well stimulations are encroaching on the borders of these “critical areas,” particularly in the Belridge oil field. The CA Farmland Mapping and Monitoring Program map layer rates land according to soil quality to analyze impacts on California’s agricultural resources. The majority of new stimulations and new oil wells are located on the border of areas designated as “prime farmland,” particularly the Belridge and Lost Hills fields. The Rose field on the other hand is located within the “prime farmland” and “farmland of statewide importance.” Also, well-sites from all fields in Kern County are located on Williamson Act Agricultural Preserve Land Parcels. By enrolling in the program these areas can take advantage of reduced tax rates as they are important buffers to reduce urban sprawl and over-development. Although the point of the act was to protect California’s important farmland and agriculture, some parcels enrolled in the Williamson Agricultural Preserve Act program even house stimulation notice sites and “new” hydraulically fractured wells.

Discussion

While allowing hydraulic fracturing, acidizing and other stimulations until January 1, 2015 under temporary regulations, SB4 requires the state of California to complete an Environmental Impact Review (EIR). New regulations will then be developed on the recommendations of the EIR. The regulations will be enforced by the Division of Oil, Gas, and Geothermal Resources (DOGGR), the agency currently responsible for issuing drilling permits to operators in the state. In some municipalities of California, an additional “land-use” development permit is required from the local land-use agency (Air district, Water District, County, other local municipality or any combination) for an operator to be granted permission to drill a well. In most areas of California a “land-use” permit is not required, and only the state permit from DOGGR is necessary. A simple explanation is DOGGR grants the permit for everything that occurs underground, and in some locations a separate regulatory body approves the permit for what occurs above the ground at the surface. The exceptions are San Benito County which has a 500 foot setback from roads and buildings, Santa Cruz County, which passed a moratorium, Santa Barbara with a de facto ban*, and the South Coast Air quality Monitoring District’s notification requirements, permitting a well stimulation (such as “fracking” or “acidizing”).  For the rest of the state permitting a well  stimulation is essentially the same as permitting a conventional well-site, although it should be recognized that some counties like Ventura have setback and buffer provisions for all (conventional and unconventional) oil and gas wells. Additionally, DOGGR’s provisional regulations do require chemical disclosures to FracFocus and public notifications to local residents 30 days in advance, but lacks public health and safety provisions such as setbacks, continuous air monitoring, and the majority of wells in the notices are exempt from groundwater monitoring,   While public notifications and chemical disclosures are all important for liability and tracking purposes, they are no substitute for environmental and engineering standards of practice including setbacks and other primary protection regulations to prevent environmental contamination. The state-sponsored EIR is intended to inform these types of rules, but that leaves a year of development without these protections.
*Santa Barbara County requires all operators using hydraulic fracturing to obtain an oil drilling production plan from the Santa Barbara County Planning Commission. No operator has applied for a permit since the rule’s passing in 2011.

References

  1. DOGGR. 2014. Welcome to the Division of Oil, Gas and Geothermal Resources.  Accessed 1/28/14.
  2. Lawriter Ohio Laws and Rules. 2010. 1501:9-1-04 Spacing of wells. Accessed 1/29/14.
  3. WVDNR. 2013. Regulations. Accessed 1/29/14.
  4. Railroad Commission of Texas. 2013. Texas Administrative Code. Accessed 1/28/14.
  5. PADEP. 2013. Act 13 Frequently Asked Questions.  Accessed 1/29/14.
  6. U.S.EPA. 2008. Wyoming Area Designations for the 2008 Ozone National Ambient Air Quality Standards. Accessed 1/29/14.
  7. UT DEQ. 2014. Uintah Basin. Accessed 1/29/14.
  8. UT DEQ. 2012. 2012 Uintah Basin Winter Ozone & Air Quality Study.
  9. Wolf Eagle Environmental. 2009. Town of Dish, TX Ambient Air Monitoring Analysis.

Sustainability and Unconventional Drilling: Pt. II

Different Definitions, Shared Discourse

By Jill Terner, PA Communications Intern, FracTracker Alliance

In the previous installment of this three part blog series, I focused on how industry defines sustainability, and how industry mobilizes research done on unconventional drilling in an attempt to label drilling a sustainable practice. That sustainability lends itself to industry’s mostly economic definition. Other groups, which for the sake of this series I will refer to as pro-environmental groups, use a different definition while sharing discourse with industry. This pattern makes sustainability a good example of a boundary object1. The versatile nature of a concept like sustainability makes it possible for different groups of people to talk about it, while each maintains their own understanding of what it is. Here, I will look at sustainability through the lens of groups charged with environmental regulation and protection, and discuss how they might use the same science as industry to tell a different story.

Sustainability Defined by Environmental Groups

While industry adheres to an economic model of sustainability, pro-environmental groups factor in environmental and social sustainability. These three facets – economic, environmental, and social – comprise a more holistic definition of sustainability, wherein the benefits of one facet do not outweigh the costs associated with another2. Focusing only on one component while downplaying others, then, would be inherently unsustainable. In particular, this view means recognizing that things like water quality and the environment are not entities we can separate from things we may care more about, like economic development3.

For example, Perkins (2012) suggests taking this holistic approach to development by rejecting one-or-the-other thinking and by decentralizing community decision-making. Through this people-and-place specific method of development regulation, the voices of all participants are heard. This process leads to representation of both industrial and pro-environmental interest groups, which, in turn, propagates social equity because everyone’s voices are being heard.

In terms of economic sustainability, environmental groups view unconventional drilling as a double-edged sword. While industry related job creation might see positive gains, other sectors of the local economy may be at a loss, particularly arenas that rely on environmental conservation4. As many of the areas slated to host drilling are non-metropolitan areas where activities like agriculture, hunting, and fishing are popular, environmental interest groups warn against drilling in these regions for economic reasons. Just as general sustainability should be viewed holistically, so should economic sustainability; all sectors of the local economy should be considered, not just those related to drilling.

A good way to illustrate this point would be to look at areas like the Marcellus Shale in Pennsylvania and the southern tier of New York. Here, outdoor tourism related industries accounted for over $200 million in 20084. A potential secondary source of income for these areas is owners of second homes that are used to escape the harshness of everyday life. Public fear of industrial consequences, regardless or whether those fears are entirely realistic, could stymy these income sources for areas located over shale formations. The industrial consequences themselves could render the environment untenable to future re-development of outdoor recreational industries4.

Environmentally speaking, regulatory groups and local leaders view sustainable practices as those that occur with the least amount of environmental impact possible3. Air and water pollution primarily related to industry emissions are a major concern, however other environmental threats are also common. These include diesel emissions from truck traffic introduced by industry, degradation of the natural landscape due to industry activity, as well as noise and light pollution5, 6. All of these things must be mitigated in order to substantiate environmental sustainability.

Acknowledging that introducing industry to a community could have different direct and indirect socioeconomic impacts on different demographics and acting on this intersectionality constitutes social sustainability2. That is to say, social sustainability means making sure that all groups of a community are involved in the implementation of development, and reaching out to those members who stand to be negatively impacted by industry’s presence. As I mentioned above, making sure that all interests within a community receive fair and adequate representation is one way to do this. As one can imagine, these three components of sustainability are dynamic and connected, and weighing them against one another results in something unsustainable.

How Environmental Regulatory Groups Use Science

As I mentioned in my previous installment of this series, little detailed research has been conducted on any impacts of unconventional drilling on local economies. As a result of this, many environmental regulation and protection groups look at economic patterns that have occurred in other cities and countries. One analogy that researchers have used is that of the “resource curse.”4 This is the tendency for areas rich in natural resources to be economically poor and experience relatively slow economic growth, typically due to conflicting national and state level interests. Proponents of environmental regulation and protection warn against rapid growth of extractive practices in resource rich areas, as it could ultimately lead to a decline in economic growth and stymieing of community betterment.

Related to the “resource curse” is the boom-bust cycle4, 5. Pro-environmental groups pay equal or more attention to the bust as well as the boom. While pro-industry groups may highlight the positive economic outcomes associated with industry, those favoring regulation are quick to speak up about the research done on the bust that often follows. The bust doesn’t necessarily negate the positive findings related to the boom, however such a historical pattern makes it clear that there could be just as many negative consequences for modern day unconventional O&G extraction.

Similar to focusing on the flipside of economic impacts, regulatory groups also draw from research done on the environmental and social impacts of unconventional drilling. These components of sustainability often don’t figure into the equation in industry-funded studies4, so considering them sheds more light on the holistic definition of sustainability. Environmentally speaking, pro-environmental groups focus on studies that address a cumulative hazard, rather than just that of one or two emissions. That is, instead of saying that levels of two or three notable pollutants are below EPA thresholds, studies should refer to the cumulative effect of all the possible pollutants.

With regards to unconventional drilling, preliminary and industry funded studies found that the amount of CO2 released was half that of conventional coal combustion. Later, however, burgeoning research indicated that other pollutants, such as ground level ozone in the air and heightened levels of manganese, strontium, and toluene in the water table can pose a great risk when considered together7.

Additionally, pro-environmental groups focus on the social costs of unconventional drilling. By doing community based participatory research8, as well as focusing on noise and light pollution as consequences that can detract from residents’ quality of life, researchers often find that the presence of industry in communities can be taxing on residents9. Although there is a lack of research on the social impacts of drilling, what little has been done has indicated that if existing social inequalities are not addressed as part of the holistic definition of sustainability, they can worsen after industry becomes present in a community4. Importantly, those who promote regulation espouse the viewpoint that these social burdens are not a necessary cost of industry that might be mollified by economic boons. On the contrary, the social piece is equally as important as the economic and environmental portions of the sustainability pie.

Next Time

In the final installment of this three part series, I will discuss how these two different definitions of sustainability inform the court of public opinion when it comes to the development of unconventional drilling.

Sources

1. Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkeley’s museum of vertebrate zoology, 1907-39. Social Studies of Science, 19, 387-420.

2. Perkins, N. D. (2012). The fracturing of place: The regulation of Marcellus Shale development and the subordination of local experience. (research paper). Retrieved from Duquesne University School of Law Legal Studies Research Paper Series. (2012-17).

3. Dernbach, J. C., & Bernstein, S. (2003). Pursuing sustainable communities: Looking back, looking forward. The Urban Lawyer, 35(3), 495-532.

4. Barth, J. M. (2013). The economic impact of shale gas development on state and local economies: Benefits, costs, and uncertainties. New Solutions, 23(1), 85-101.

5. Brasier, K. J., Filteau, M. R., McLaughlin, D. K., Jacquet, J., Stedman, R. C., Kelsey, T. W., & Goetz, S. J. (2011). Residents’ perceptions of community and environmental impacts from development of natural gas in the Marcellus Shale: a comparison of Pennsylvania and New York cases. Journal of Rural Sociology, 26(1), 32-61.

6. Korfmacher, K. S., Jones, W. A., Malone, S. L., & Vinci, L. F. (2013). Public health and high volume hydraulic fracturing. New Solutions, 23(1), 13-31.

7. Smith, K.R., Frumkin, H., Balakrishnan, K., Butler, C. D., Chafe, Z. A., Fairlie, I., Kinney, P., Kjellstrom, T., Mauzerall, D. L., McKone, T. E., McMichael, A. J., & Schneider M. (2013). Energy and human health. Annual Review of Public Health, 34, 159-188.

8. Perry, S. L. (2013). Using ethnography to monitor the community health implications of onshore unconventional oil and gas developments: examples from Pennsylvania’s Marcellus Shale. New Solutions, 23(1), 33-53.

9. Ferrar, K. J., Kriesky, J., Christen, C. L., Marshall, L. P., Malone, S. L., Sharma, R. K., Michanowicz, D. R., & Goldstein, B. D. (2013). Assessment and longitudinal analysis of health impacts and stressors perceived to result from unconventional shale gas development in the Marcellus Shale region. International Journal of Occupational and Environmental Health, 19(2), 104-112.

Sustainability and Unconventional Drilling: Different Definitions, Shared Discourse

By Jill Terner, PA Communications Intern, FracTracker Alliance

In 1987, at the World Commission on Environment conference, sustainable development was recognized internationally for the first time. Sustainability in this sense is broadly defined as both the goal and process of serving present needs while not precluding the ability of future generations to serve their needs1. This general definition has lent itself well to becoming the cornerstone of arguments for and against drilling that uses hydraulic fracturing.

A largely economic definition of sustainability is behind many pro-drilling agendas, while environmental sustainability is mainly what informs regulatory or anti-drilling viewpoints2. Though these two parties make different uses of the term sustainability, they still share discourse on this topic. This common use that overlies differing connotations renders sustainability what Star & Griesemer (1989) would term a boundary object3.

Over the course of this blog series, I will look at how both industry and environmental regulatory committees are using the science at their disposal to make a case for or against unconventional drilling as a sustainable practice. Finally, I will finish by discussing how the shared discourse that uses these competing definitions impacts the court of public opinion.

Sustainability Defined by Industry

From an industrial perspective, sustainability is viewed in an economic light. Social, environmental, and other facets of sustainability aren’t ignored, though. Rather, they are seen as part of a cost-benefit equation wherein the potential impacts of industrial presence on communities and the environment are quantified and measured against the potential economic benefits associated with tapping into unconventional oil and gas reserves2,4.

The primary, direct economic benefit reported to be associated with this industry’s presence in communities is job creation. Industry leaders espouse the notion that allowing drilling in an area opens up job opportunities for rig workers. Extractive industries are typically located in economically depressed, non-metropolitan areas6. Thus, the benefit of employment and inferred family support is a great touted advantage4.

Additional direct benefits are associated with leasing of both land and mineral rights to grant drilling access to industry. Selling the mineral rights below a plot of land can be a lucrative option for those who own them. However, the mineral rights owners are not always the same people as those who own the land above the minerals to be leased. As such, landowners must be mindful of what is going on with the minerals beneath their property.

Ancillary businesses may also reap economic benefits associated with industry. Primarily, businesses that supply the materials needed in the construction and maintenance of the drilling operation can potentially benefit from industry presence. More indirectly, unrelated businesses such as hotels and restaurants in the community may stand to benefit from the influx of wealth associated with residents’ newfound employment.

These direct and indirect economic consequences are commonly viewed as a positive investment in the community by industry, and the local political leaders that support industry’s presence. If residents allow drilling, industry claims, they are making an investment towards economic stability and sustainability – which will be propagated by the influx of wealth due to job creation. Negative environmental and social impacts that may occur alongside this economic boon typically fall short of outweighing its benefits in the eyes of the industry.

How Industry Makes Use of Current Research

At present, there is relatively little scientific research done on the impacts of unconventional drilling. What research does exist on the sustainable impacts of unconventional drilling consists largely of studies funded by industry4. As hydraulic fracturing is a relatively new practice, more research continues to burgeon and inform questions regarding economic, social, and environmental impacts from all angles.

One way industry gets around the lack of pre-existing research is to do input-output analysis4. This analysis links the primary industry with ancillary ones through tables of coefficients, and calculates the estimated direct and indirect economic impacts through calculations using that table. While some of the calculated benefits may be viewed positively across the board, public perception of these gains may be different in different locations5, making it tough to generalize acceptance of findings.

Relatedly, industry also takes research done on the economic benefits incurred by communities and states where unconventional drilling has been in place longer, and applies the methods or results to areas where drilling is new4. For example, coefficients generated from an input-output equation from a Texas community could be used to project benefits for a community in New York. Analogy can be a powerful tool, and with the lack of research on current industrial practices, it is the best tool to use in certain circumstances. However, as geographic, economic, social, and environmental contingencies are different between locations of drilling, comparison may be somewhat limited.

Additionally, many pro-industry groups are dedicated to refuting scientific studies that have been put out by academics, environmental regulatory bodies, or independent researchers. For example, the website Energy in Depth published a thorough critique of the HBO documentary Gasland, debunking it point-by-point. When scientific research cannot be entirely disproved, promoting the benefits of unconventional drilling over the costs of another dirtier fuel, like coal, is also another way to promote drilling. While these cost-benefit-analyses can be legitimate, they often fail to incorporate the use and potential benefits of other energy resources, like wind.

What’s Next?

In the next installment of this series, I will discuss how regulatory committees are defining sustainability, and how they are mobilizing science towards their definition.


References

1. Dernbach, J. C., & Bernstein, S. (2003). Pursuing sustainable communities: Looking back, looking forward. The Urban Lawyer, 35(3), 495-532.

2. Finewood, M. H., & Stroup, L. J. (2012). Fracking and the neoliberalization of the hyrdo-social cycle in Pennsylvania’s Marcellus shale. Journal of Contemporary Water Research and Education, (147), 72-79.

3. Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkeley’s museum of vertebrate zoology, 1907-39. Social Studies of Science, 19, 387-420.

4. Barth, J. M. (2013). The economic impact of shale gas development on state and local economies: Benefits, costs, and uncertainties. New Solutions, 23(1), 85-101.

5. Perkins, N. D. (2012). The fracturing of place: The regulation of Marcellus Shale development and the subordination of local experience. (research paper). Retrieved from Duquesne University School of Law Legal Studies Research Paper Series. (2012-17).

6. Freudenburg, W.R., and L.J. Wilson. “Mining the data: Analyzing the economic implications of mining for nonmetropolitan regions.” Sociological Inquiry. 72.4 (2002): 549-575. Print.

The awkward “k” in “fracking”

Note

This post has been archived. It is provided here for informational purposes only.

By Samantha Malone, MPH, CPH – Manager of Science and Communications, FracTracker Alliance

 

We are often asked why there is no “k” after “frac” in our name, FracTracker. This makes for lively conversations at parties, I assure you. Quite frankly, the etymology of the term “fracking” would make for its own interesting study, especially if you include fans of Battlestar Galactica in your research.

Truth-be-told, our name stemmed from an intense academic vs communications debate. FracTracker originally started as a project within the University of Pittsburgh. As many people in the field of know, academics are not known for brevity in the naming of projects or publications. We wanted a name that embodied both the research and community aspects of our work but was short enough to say all in one breadth. Calling such a new initiative “The Mapping of Unconventional Oil and Gas Extraction Data at the University of Pittsburgh’s Center for Healthy Environments and Communities,” while accurate, just doesn’t flow off the tongue nicely.

At the time “fracking” was a term used in some circles to refer to the entire process of extracting natural gas and oil using non-traditional methods – even though it technically only refers to the hydraulic fracturing of a well to stimulate hydrocarbon retrieval. A project partner of ours suggested the name “FrackTracker,” since we planned to track all activity related to unconventional oil and gas drilling. According to people who work in industry, however, including a “k” in the word fracking just doesn’t make sense… And rightly so; there is no “k” in the phrase hydraulic fracturing, so why should there be one in fracking? Even though fracking is now a term commonly used to discuss the industry as a whole, we still decided to omit the awkward “k” just in case.

#didntneedtoknow but #thanks


FracTracker became an independent non-profit in 2012 called FracTracker Alliance. Learn more about us >

Loyalsock from the Sky

By Pete Stern, Aerial Photographer

When I met with John Dawes and Brook Lenker to discuss the possibilities of applying my aerial photography to environmental issues in Pennsylvania, I knew that my aerial photography career, which is really more a hobby, a passion and an avocation, was about to change. For years I’ve been taking aerial photographs, mainly focusing on the Pennsylvania Coal Region – purely as art – showing my work in galleries and universities, and self-publishing books. I refrained from expressing an opinion about PA coal mining, leaving it to the viewer to inform the images with their own knowledge of the environmental effects of mining.

As a guest speaker at the 2013 EPCAMR Conference at State College, I learned a great deal about the problem of mine water treatment, and soon had the opportunity to photograph a mine water treatment facility in the Panther Valley for Schuylkill County Headwaters. A friend had asked me for years why I don’t photograph the fracking activities in Pennsylvania, and my answer was that the fracking operations don’t lend themselves to the kind of artistic interpretation from the air as does the Coal Region. But when John mentioned photographing the Loyalsock State Forest fracking activity, I saw that I could use my aerial photography for a higher purpose.

I quickly began studying maps of the Clarence Moore Lands, in which Loyalsock is situated. I looked at images of Rock Run and many other places in the Forest, and then visited and hiked in the Forest. I saw that this was a place of great natural beauty and an ecological treasure. I learned that this precious forest is being threatened by fracking activity that is growing at an astounding rate throughout the forest. I knew I wanted to help document this environmental assault with my photography, and the question became how to most effectively and safely do this.

I have almost always taken my aerial photographs from my own small airplane, which is essentially an advanced ultralight. Flying and photographing at the same time has been the nexus of my art. Loyalsock is a large, rugged and remote area, however, with few airports or emergency landing fields nearby. After much consideration, I decided to hire a pilot to fly me to Loyalsock so that I could concentrate solely on taking photographs. I found a retired Air Force Colonel in Selinsgrove, now a flight instructor, who was eager to assist me in this project. He had been a B52 pilot in Vietnam and had participated in Operation Linebacker 2. It seemed to me that, perhaps, this mission was similar to what he may have done in his combat years, but now, for the good of saving the environment, rather than dropping bombs on it.

With the FracTracker Loyalsock map (below) and some coordinates in hand, we departed Selinsgrove in a Cessna 172 on October 9th. Starting with Bodine Mountain Northwest of Trout Run, we could see fracking operations covering nearly every hilltop. I opened the window of the 172 and started photographing, and as we flew Northeast over Loyalsock, we could see fracking operations everywhere. It was difficult to make out the exact boundaries of the Loyalsock State Forest from the air, and it appeared that the heart of the Forest is, for now, being spared from direct drilling. But I knew that it was just a matter of time before the Forest itself became the victim of unchecked exploitation, threatening the pristine native trout streams, polluting the air, and potentially driving endangered bird species from the area.


Drilled unconventional wells in Pennsylvania and control of mineral rights on state forest land. To access full controls, such as legends, layer controls, and layer descriptions, please click the expanding arrows in the top-right corner of the map.

Flying over the forest, I was very glad that I opted to hire a pilot for this work. It was tricky flying low over ridges and valleys trying to photograph every site. The gusty winds were knocking around the 172, which is much heavier than my aircraft. It was a very productive and successful flight, but also disheartening. Flying allows us views of the Earth that are unavailable from the ground. It has always seemed to me that, especially in Pennsylvania, if there is an unspoiled place of natural value, someone will find a way to destroy it. Loyalsock is a natural treasure which must be protected, but from the growing abundance of fracking operations that can be witnessed from the air, it appears that saving this Forest is an enormous challenge. Thanks to resources like groups like the Save the Loyalsock Coalition, at least the best effort is being made.


Pete Stern is an aerial photographer and artist. His work is featured on his website: www.psartwork.net.

2013 American Industrial Hygiene Association Fall Conference

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

FracTracker was recently in attendance at the American Industrial Hygiene Association annual conference, held in Miami, FL, September 28-October 1st.  The FracTracker Alliance’s Kyle Ferrar participated in the workshop “Natural GAS EXTRACTION – Rising Energy Demands Mandate a Multi-Perspective Approach.”  The workshop was moderated by Dr. Mark Roberts, and in addition to the FracTracker Alliance, there was a presentation by NIOSH Senior Industrial Hygienist Eric Esswein and the well-versed chemist, engineer, and industry associate/consultant  John Ely.  The workshop was well-attended (sold out).

In case you missed it, FracTracker’s annotated presentation is posted here:  Ferrar_AIHA Presentation_9.29.13.

Local Actions and Local Regulations in California

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

The potential for large scale oil development in the Monterey and other shale basins has raised concern in California communities over the use of hydraulic fracturing and other unconventional well stimulation techniques, such as acidizing.  The fact that DOGGR was not tracking the use of these techniques, much less regulating them, has led to a variety of actions being taken by local governments.  Several groups including county directors, city councils, and neighborhood and community councils have passed resolutions supporting state-wide bans on hydraulic fracturing and other controversial stimulation techniques.  As can be seen in the following map, several of them are located within the greater LA metropolitan area, which is currently considering a local moratorium.

This map shows the local civic groups in the LA metropolitan area that have passed resolutions supporting statewide bans/moratoriums on hydraulic fracturing and other controversial stimulation activities.

This map shows the local civic groups [green check marks] in the LA metropolitan area that have passed resolutions supporting statewide bans/moratoriums on hydraulic fracturing and other controversial stimulation activities. Click on the map to view larger image.

Two local jurisdictions, the South Coast Air Quality Management District and the County of Santa Barbara, have enacted their own measures to regulate oil and gas development.  Both require notification of drilling techniques, and Santa Barbara County requires operators to file for a unique permit when using hydraulic fracturing. Data from the county of Santa Barbara’s permitting program was not readily accessible – although it may well be that they have not issued any permits.  The South Coast Air Quality Management District is charged with managing the air quality for Orange County, the city of Los Angeles and the surrounding urban centers of Riverside and San Bernardino.  In the spring of 2013, the SCAQMD passed Southern California rule 1148.2.  The rule requires oil operators to submit specific reports of well activity documenting drilling, chemical use and the well stimulation techniques employed, directly to the SCAQMD.  Reportable methods include acidification, gravel packing, and hydraulic fracturing.  The rule was implemented June 2, 2013. The database of well-site data is readily accessible via the web.  Web users can obtain individual well summaries of drilling activity and chemical-use reports, or download the full data sets.  The site is user-friendly and the data is easily accessible. Unfortunately, the currently available data set is missing some of the most important information, specifically well API numbers – the unique identifier for all wells drilled in the United States.  This data gap makes it impossible to compare or cross-reference this data set with others.

AQMD Wellsites

FracTracker has mapped the well-sites reported on the SCAQMD in the new map on the California page titled California Local Actions, Monitoring and Regulations.  This map outlines the boundaries of SCAQMD and other sub-state regulatory agencies that have elected to manage the drilling activity.  Details on the programs are provided in the map layers.  The data published by the SCAQMD has been included in the map.  In the map above, if you compare the SCAQMD data layer to the Hydraulically Fractured dataset derived by combining DOGGR and FracFocus data, you can see that the two data sets do not look to include the same well sites.  Unfortunately, it cannot be known whether this is merely an issue of slightly dissimilar coordinates or legitimate data gaps; the SCAQMD data set lacks the API identifier for the majority of well sites reported.  Because the regulatory landscape tends to follow the political leadership that reflects the interests of the constituency, legislative districts have also been included as a viewable map layer.   Be active in your democracy.

Keeping Track of Hydraulic Fracturing in California

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

Environmental regulations in California are considered conservative by most state standards. To name a few practices, the state has developed an air quality review board that conducts independent toxicological assessments on a level competitive with the U.S. EPA, and the state instituted the U.S.’s first green house gas cap and trade program. But most recently the California Department of Conservation’s Division of Oil, Gas and Geothermal Resources (DOGGR) has been criticized in the media for its lack of monitoring of hydraulic fracturing activity. DOGGR has been responsive to criticism and preemptive of legislative action and has begun a full review of all well-sites in California to identify which wells have been hydraulically fractured and plan to monitor future hydraulic fracturing. Additionally they have maintained historical records of all wells drilled, plugged, and abandoned in the state in web-accessible databases, which include data for oil and gas, geothermal, and injection wells, as well as other types of support wells such as pressure maintenance, steam flood etc.. The data is also viewable in map format on the DOGGR’s online mapping system (DOMS).

To understand what is missing from the DOGGR dataset, it was compared to the dataset extracted from FracFocus.org by SkyTruth. The map “Hydraulic Fracturing in California” compares these two datasets, which can be viewed individually or together as one dataset with duplicates removed. It is interesting to note the SkyTruth dataset categorizes 237 wells as hydraulically fractured that DOGGR does not, and identifies three wells (API #’s 11112215, 23727206, and 10120788) not identified in the DOGGR database. For the some of these 237 wells, DOGGR identifies them as new, which means they were recently drilled and hydraulically fractured and DOGGR will be updating their database. Many are identified as active oil and gas wells., while the rest are identified as well types other than oil and gas. Also the SkyTruth dataset from FracFocus data contains additional information about each well-site, which DOGGR does not provide. This includes volumes of water used for hydraulic fracturing and the fracture date, both of which are vital pieces of monitoring information.

The California State Legislature is currently reviewing California Senate Bill 4 (CA SB 4) written by Sen. Fran Pavley (D-Agoura Hills), which would put in place a regulatory structure for permitting and monitoring hydraulic fracturing and other activity.  A caveat for acidification is also included that would require companies to obtain a specific permit from the state before acidizing a well.  The bill has received criticism from both industry and environmentalists.  While it does not call for a moratorium or regulate what chemicals are used, it is the first legislation that requires a full disclosure of all hydraulic fracturing fluid additives, including those considered proprietary.  This is the last of at least seven bills on the issue, the majority of which have been turned down by lawmakers. The most conservative bills (Assemblywoman Mitchell; D-Culver City) proposed moratoriums on hydraulic fracturing in the state. Earlier this year lawmakers approved a bill (Sen. Pavley; D-Agoura Hills) that would direct the state to complete and independent scientific risk assessment of hydraulic fracturing. The bill directs permitters to deny permits if the study is not finished by January 1, 2015, and also requires public notice before drilling as well as disclosure of chemicals (besides those considered proprietary). In May, a bill (Sen. Wold; D-Davis) was passed requiring drillers to file a $100,000 indemnity bond for each well, with an optional blanket indemnity bond of $5 million for operators with over 20 wells. Another bill (Jackson; D-Santa Barbara) that would require monitoring of both transportation and disposal of wastewater was tabled until next year.

Although hydraulic fracturing has been conducted in California for over a decade, it was not monitored or regulated, and the majority of Californians were not aware of it. Industry groups have portrayed the lack of attention as a testament to its environmental neutrality, but Californians living smack dab in the middle of the drilling tend to tell a different story. The issue is now receiving attention because hydraulic fracturing is such a hotbed topic of contention, along with the potential future of the billions of barrels of oil in the Monterey Shale. The unconventional extraction technology necessary to recover the oil from these deep shale formations is state of the art, which means it is not tried and true. The methods include a combination of high tech approaches, such as horizontal drilling, high volume hydraulic fracturing, and acidification to name a few. Realize: if this technology existed for the last 60 years, the Monterey Shale would already have been developed long ago, along with the rest of the U.S. deep shale formations.