Posts

Sand mining operation in Wisconsin, Photo by Ted Auch, 2013

Chieftain’s Wisconsin Frac Sand Mine Proposal

Potential Land-Cover Change and Ecosystem Services
By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Chieftain Metals Corp, a relatively large mining company, recently proposed to develop nine silica sand mines in the Barron County, Wisconsin towns of Sioux Creek and Dovre, as well as adjacent Public Land Survey System (PLSS) parcels.1 Here we show that the land that Chieftain is proposing to convert into one of the state’s largest collections of adjacent silica sand mine acreage (like the one shown above) currently generates $8-15 million in ecosystem services and commodities per year.

Background

Sand, often silica sand, is used in the hydraulic fracturing process of oil and gas drilling. Including sand in the frac fluid helps to prop open the small cracks that are created during fracking so that the hydrocarbons can be more easily drawn into the well. To supply the growth in the oil and gas industry, bigger and bigger sand mines are being developed with four factors being critical to this expansion:

A Map of the St. Peter Silica Sandstone Geology Across the Minnesota, Wisconsin, Illinois, Missouri, Arkansas, and Oklahoma

Figure 1. St. Peter Silica Sandstone geology across Minnesota, Wisconsin, Illinois, Missouri, Arkansas, and Oklahoma

  1. The average shale lateral is getting longer by 50-55 feet per quarter and the average silica sand demand is increasing in parallel by 85-90 tons per lateral per quarter with current averages per lateral in the range of 3,500-4,300 tons (Note: These figures stem from an analysis of 780 and 1,120 Ohio and West Virginia laterals, respectively.)
  2. The average silica sand mine proposal throughout the Great Lakes is increasing exponentially.
  3. The average sand mine is targeted at non-agricultural parcels disproportionately. As an example we looked at one of the primary Wisconsin frac sand counties and found that even though 6% of the county was forested and nearly 50% was in some form of agriculture, 98.2% of the frac sand mine area was forested prior to mining. An already fragmented landscape with respect to threatened or endangered ecosystems is becoming even more so, as the price of sand hits an exponential phase and the silica industry all but abandons its positions in Oklahoma and Texas.
  4. The primary geology of interest to the silica sand industry is the St. Peter Silica sandstone geology, which includes much of Southern Minnesota, West Central and Southern Wisconsin, as well as significant sections of Missouri and Arkansas (Figure 1).

Sand Mine Proposal Land Use Footprint

To quantify the land-cover/land-use change (LULC) of these proposed mines, we extracted the parcel locations from WI DNR’s Surface Water Data Viewer using the company’s construction permit.2 These parcels encompass approximately 5,671 acres along the edge of what US Forest Service calls the Eastern Broadleaf Forest (Minnesota & NE Iowa Morainal, Oak Savannah) and Laurentian Mixed Forest provinces (Southern Superior Uplands).

Using a now-defunct WI DNR program called WISCLAND we were able to determine the land-cover within the aforementioned acreage in an effort to determine potential changes in ecosystem services and watershed resilience. The WISCLAND satellite imagery was generated in 1992, so it provided a nice snapshot of what this region’s landscape looks like absent silica sand mining.

In our joining of the PLSS and WISCLAND data we determined that 2,684 acres (47%) are currently covered by forests, namely:

Land-Cover and # of Polygons across ten land-cover catagories across the Chieftain Silica Mine Proposal

Figure 2. Chieftain silica sand mine proposal’s land-cover across 5,671 acres in Barron County, WI

Chieftain Silica Sand Mine Forest Cover Across Six Forest Types

Figure 3. Chieftain proposal’s forest cover across 5,671 acres in Barron County, WI

Forage crops and grasslands occupy 2,010 acres (35%) across 331 polygons averaging 7 acres scattered across the proposed mining area. Corn and other row crops account for 825 acres (15%) of Chieftain’s proposal, randomly distributed across the area of interest. Collectively, these land-cover types account for 22% of all polygons averaging 5.7 and 4.7 acres, respectively. Shrublands account for ≤1% of the Chieftain proposal (36 acres) averaging 3 acres spread across a mere 12 polygons (Figures 4 and 5).

Chieftain Silica Sand Mine Agricultural and Shrubland Cover Across Six Types

Figure 4. Chieftain proposal’s agricultural & miscellaneous cover across 5,671 acres, Barron County, WI

Chieftain Silica Sand Mine Cover Across Six Land-Use Types

Figure 5. Chieftain proposal’s land-cover by acreage across 5,671 acres, Barron County, WI

Chieftain Silica Sand Mine Wetland Cover Across Seven Community Types

Figure 6. Chieftain silica sand mine proposal’s wetland cover across 5,671 acres in Barron County, WI.

Seven types of forested and shrub-dominated wetlands occupy 101 acres (1.8%) of Chieftain’s PLSS parcels, with an average size of four acres spread across 49 discrete polygons. Wetlands are clustered in three sections of the proposed mining area, with the largest continuous polygons being adjacent 160 acre “Wetland, Lowland Shrub, Broad-leaved Deciduous” and 88 acre “Wetland, Emergent/Wet Meadow” polygons along the area of interest’s eastern edge (See Figure 6 right).

Land Value

In an effort to quantify the value of this aggregation of parcels we calculated annual plant and soil productivity, as well as crop productivity, in terms of tons of carbon and nitrogen3 lost using established WI forest, crop, and freshwater productivity values.4-6 

It is worth noting that the following estimates are conservative given that we were not able to determine average above/belowground ecosystem productivity values for the wetland and barren. Additionally, our estimates for crops and grasslands did not include belowground productivity estimates, which likely would increase the following estimates by 20-30%.

1. Forests

The aforementioned-forested polygons accrue 44,274-90,969 tons of aboveground CO2. This means that if we assume the average forest in this area is 65-85 years old, the Chieftain mine proposal would potentially remove 3.3-6.8 million tons of built up CO2 equivalents. This figure is equal to the per capita CO2 emissions of 202,800-416,700 WI residents. The renewable wood generated on this site has a current market value of $418,516 to $654,125.

If we assume that the price of CO2 is somewhere between $12 and $235 per ton the forested polygons within Chieftain’s proposal currently capture (remove from the atmosphere) $4-17 million worth of CO2 annually.

Additionally, this area generates 23,262-45,447 tons of CO2 via soil processes such as litter decomposition and root production (i.e., 1.8-3.4 million tons over the average 65-85 year lifespan of these forests). The annual value of these belowground processes in terms of soil fertility (i.e., soil organic matter, nitrogen, and phosphorus) is somewhere between $569,962 and $1,029,662 or $43-77 million over the 65-85 year period used in this analysis.

2. Forage Crops and Grasslands

The 1,018 acres of forage crops are currently generating 6,526 CO2 tons per year, which is equivalent to the per capita emissions of 400 WI residents (Note: This carbon has a current value in the range of $417,700-$848,200). The 992 acres of grasslands are capturing 6,600-12,600 tons of CO2 per year and if we assume the average grassland parcel in WI is 5-15 years of age these polygons have captured CO2 equivalent to the per capita emissions of 4,000-7,700 Wisconsinites. Together these two land-cover types capture $840,300-2,518,000 worth of CO2 annually. Again it is worth noting these values do not include any accounting soil processes, which are generally 20-30% of aboveground productivity.

3. Corn, Other Row Crops, Shrublands

The 860 acres of corn, miscellaneous row crops, and shrublands are currently generating 10,450-10,980 CO2 tons per year, which is equivalent to the per capita emissions of 640-670 WI residents. Using the same assumptions about time in grassland (i.e., average Conservation Reserve Program (CRP) tenure) and the 65-85 year assumption used for forests for shrublands we estimate these three land-cover types annually capture CO2 equivalent to the per capita emissions of 8,600-11,030 Wisconsinites. Together these three land-cover types capture $682,420-1,498,030 worth of CO2 annually.

The total average value of commodities produced on the 1,843 acres of cropland is $462 per acre or $851,272 annually.

4. Open Waters

This small fraction of the Chieftain proposal captures 134 tons worth of CO2 annually with a value of $8,590-17,650.

Potential CO2 Capture and Storage Removal associated with the Chieftain Silica Mine Proposal, Barron County, WI

Total Quantifiable Monetary Value

In summary, the nine Chieftain frac sand mines if approved would use land that currently generates $8.77-16.63 million in ecosystem services and commodities per year. Historical and future land-use potential valuations are generally not accounted for in mineral lease agreements. This analysis demonstrates that such values are nontrivial and should at the very least be incorporated into lease agreements, given that post-mining reclamation strategies result in lands that are 40% less productive. If these lands are converted to sand mines, their annual values would drop to $5.0-9.5 million post-development.

Questions about the impact of such operations on LULC in the Mississippi Valley are becoming more and more frequent. For example, families such as the Schultz in Trempealeau County are signing permanent conservation easements. Doing so allows them to continue farming and allocates some acreage to the restoration of oak savanna and dry prairie, considered by the WI Department of Natural Resources (DNR) as “globally imperiled” and “globally rare,” respectively.

References & Footnotes

  1. It is worth noting that Chieftain is taking a huge gamble with this proposal. It stands to reason that such risky ventures are necessary given that the company’s share price has plummeted to $00.15 per share since its IPO days of around $5.50-6.00. These gambles could either catapult Chieftain into the frac sand mining big leagues or relegate it to the bench, however.
  2. Chieftain Silica Sand Mine Proposal, Barron County, WI Review, page 4
  3. We used carbon and nitrogen as their importance from a greenhouse gas (i.e., CO2, CH4, N2O), biogeochemical, and soil fertility perspective is well established.
  4. Burrows, S.N., Gower, S.T., Norman, J.M., Diak, G., Mackay, D.S., Ahl, D.E., Clayton, M.K., 2003. Spatial variability of aboveground net primary production for a forested landscape in northern Wisconsin. Canadian Journal of Forest Research 33, 2007-2018.
  5. Klopatek, J.M., Stearns, F.W., 1978. Primary Productivity of Emergent Macrophytes in a Wisconsin Freshwater Marsh Ecosystem. American Midland Naturalist 100, 320-332.
  6. Scheiner, S.M., Jones, S., 2002. Diversity, productivity and scale in Wisconsin vegetation. Evolutionary Ecology Research 4, 1097-1117.

Thanks to Jim Lacy at the Wisconsin Sate Cartographer’s Office, University of Wisconsin-Madison.

Fracking vs. Ohio’s Renewable Energy Portfolio – A False Distinction

Changes to OH Wind Power

Part I of a Multi-part Series – By Ted Auch, OH Program Coordinator, FracTracker Alliance

Governor Kasich recently signed SB 310 “Ohio’s Renewable Energy Portfolio Standard” and HB 483.1 This action by all accounts will freeze energy efficiency efforts (such as obtaining 25% of the state’s power from renewables by 20252) and impose a tremendous degree of uncertainty on $2.5 billion worth of wind farm proposals in Ohio.

Active & Proposed Wind Projects in the U.S.


The above map describes active and proposed renewable energy projects, as well as energy related political funders and think tanks. We will be relying heavily on this map throughout our Ohio renewable energy series. Click the arrows in the upper right hand corner of the map to view the legend, metadata, and more.

Opposing Views

Sides of the SB 310 and HB 483 Debate

Opposition to SB 310 and HB 483 is coming from the business community3 and activists, while powerful political forces provide support for the bill (see figure right). Opponents feel that renewables and a more diversified energy portfolio are the true “bridge fuel,” and unlike hydrocarbons, renewables provide a less volatile or globally priced source of energy.

HB 483 will change new commercial wind farms setbacks to 1,300 ft. from the base of the turbine to the closest property line – rather than the closest structure. The bill will also change the setback for permitted and existing wind projects to 550 feet from a property line in the name of noise reduction, potential snow damage (Kowalski, 2014; Pelzer, 2014). This imposed distance is curious given that setbacks for Utica oil and gas wells are only 100-200 feet.

OH’s turbine setback requirements instantly went from “middle of the pack” to the strictest in the nation. OH is now in the dubious position of being the first of 29 states with Renewable Energy Standards (RESs) to freeze renewable energy before it even got off the ground. Is the road being intentionally cleared for an even greater reliance on shale gas production and waste disposal in OH?

An Environment of Concerns

As Mary Kuhlman at the Public News Service pointed out, the concern with both bills from the renewable energy industry – including wind giant, Iberdrola – is that the bills will “create a start-stop effect that will confuse the marketplace, disrupt investment, and reduce energy savings for customers.” These last minute efforts to roll back the state’s renewable energy path were apparently inserted with no public testimony; the OH Senate spent no more than 10 minutes on them, and there was overwhelming support in both the House and the Senate.

Ohioans, unlike their elected officials, support the renewable energy standards according to a recent poll (Gearino, 2014). Voters are in favor of such measures to the tune of 72-86%, with the concern being the potential for organic job growth4, reduced pollution, and R&D innovation in OH rather than marginal cost increases.

The elephant in the room is that fossil fuel extraction may not improve residents’ quality of life. Many of the most impoverished counties in this country are the same ones that relied on coal mining in the past and hydrocarbon production presently. The best examples of this “resource curse” are the six Appalachian Mountain and Texas Eagle Ford Shale counties chronicled by The New York Times (Fernandez and Krauss, 2014; Flippen, 2014; Lowrey, 2014).

Ohio Wind Potential

Ohio Wind Speed, Utica Shale Play, and Permitted Utica Wells

Figure 1. OH Wind Speed, Utica Shale Play, & Permitted Utica Wells. Click to enlarge.

According to the American Wind Energy Association (AWEA), OH currently has 425-500 megawatts (MW) worth of operating wind power, which ranks it ahead of only Kentucky in the Appalachian shale gas corridor and #26 nationally.6 Using factors provided by Kleinhenz & Associates, a 428 MW capacity equates to 856-1,284 jobs, $628 million in wages (i.e., $49-73K average), $1.85 billion in sales, and $48.9 million in public revenues.

Seventy-one percent of OH’s capacity is accounted for by the $600 million Iberdrola owned and operated Blue Creek Wind Farm in northwestern OH. The terrestrial wind speeds are highest there – in the range of 14.3-16.8 mph as compared to the slow winds of the OH Utica Shale basin (Figure 1).6 It is worth noting that the recent OH renewable energy legislation would have diminished the Blue Creek project by 279 MW if built under new standards, given that only 12 of the turbines would fall within the new setback criteria.

Ohio Wind Capacity (MW) Added Between 2011 and 2014

Figure 2. OH Wind Capacity (MW) Added Between 2011 and 2014. Click to enlarge.

If OH were to pursue the additional 900 MW public-private partnership wind proposals currently under review by the Ohio Power Siting Board (OPSB), an additional 900,000-1.2 million jobs, $1.3 billion in wages, $3.9 billion in sales, and $102.9 million in revenue would result. These figures are conservative estimates for wind power but would result in markedly more jobs for Ohioans with the component manufacturing and installation capacity already in OH (Figure 2). The shale gas industry, in comparison, relies overwhelmingly on the import of goods, services, capital, and labor for their operations. Additionally, lease agreements with firms like Iberdrola compare favorably with the current going rate for Utica leases in OH; landowners with turbines on their properties receive $8K. Nearby neighbors receive somewhat smaller amounts depending on distance from turbines, noise, and visibility.

OH’s current inventory of wind projects alleviate the equivalent of 45 Utica wells worth of water consumption.7 Considering current wind energy capacity and the proposed 900 MWs, OH will have only tapped into 2.4% of the potential onshore capacity in the Buckeye State. If the state were to exploit 10% more of the remaining wind capacity, the numbers would skyrocket into an additional 5.5-7.1 million jobs, $8.1 million in wages, $23.8 billion in sales, and $627.9 million in public revenues.

Taking the Wind out of the Sails

However, SB 310 and HB 483 took the wind out of Iberdrola and the rest of the AWEA’s membership’s proverbial sails. Their spokesperson noted that “The people (who will be hurt) most are the ones who have spent a couple of million dollars to go through the OPSB process expecting those (renewable-energy) standards to be there.” OH’s increased capacity historically has accounted for approximately 2.3% of increases nationwide.

Equally, hydrocarbon production dependent states like Texas have found time, resources, and regulatory room for wind even as they continue to explore shale gas development. Texas alone – home to 26% of the nation’s active oil and gas wells according to work by our Matt Kelso – accounted for 14% of wind-power installation capacity coming online (Gearino, 2013). This figure stands in contrast to the claims of those that supported SB 310 and HB 483 that increase in renewable energy equate to declines in jobs, tax revenue, and countless other metrics of success. The politics of Texas and the state’s higher reliance on hydrocarbon generation should demonstrate that support for renewables is not a zero-sum game for traditional energy sources.

The average US wind farm has a potential of 300 MWs, with approximately 88 turbines or 3.4 MW per turbine spread across an average footprint of 7,338 acres. The actual footprint of these turbines, however, is in the range of 147-367 acres. Tower and turbine heights are generally 366 and 241 feet, respectively. These projects generate 0.89 jobs per MW and nearly 175,000 labor hours.

Thus, the potential of wind power from a tax revenue, employment, and energy independence standpoint is substantial but will only be realized if OH strengthens and diversifies renewable energy standards in Columbus.

Next in the Series

In the next part of this series we will look at the potential of woody biomass as an energy feedstock in OH.


References

Footnotes

  1. Most of HB 483 focuses on taxation and social programs with the one hydrocarbon provision doubling maximum penalties for gas pipeline violations removed by the Ohio House Finance Committee.
  2. According to Ohio’s Public Utilities Commission “At least 12.5 percent must be generated from renewable energy resources, including wind, hydro, biomass and at least 0.5 percent solar. The remainder can be generated from advanced energy resources, including nuclear, clean coal and certain types of fuel cells…at least one half of the renewable energy used must be generated…in Ohio.”
  3. Supporters include Honda, Whirlpool, Owens-Corning, Campbell Soup Co., and most of the big players in the alternative-energy sector.
  4. Ohio is at the vanguard of wind turbine component manufacturing with its thriving steel industry and more than 60 supply chain companies that would assuredly mushroom with a more robust RES. Ohio is home to 11% of the nations’ wind-related manufacturing facilities making it #1 in the nation.
  5. This is equivalent to 305,278 Ohioans, 18.07 million tons of CO2 or 950,012 Ohioans annual emissions.
  6. Note that the wind speed map includes measurements made at 50 meters in height, while OH turbines are typically installed at 80-100 m hub height, which “is the distance from the turbine platform to the rotor of an installed wind turbine and indicates how high your turbine stands above the ground, not including the length of the turbine blades. Commercial scale turbines (greater than 1MW) are typically installed at 80 m (262 ft.) or higher, while small-scale wind turbines (approximately 10kW) are installed on shorter towers.”
  7. Assuming the following claim from the American Wind Energy Association is true: “The water consumption savings from wind projects in Ohio total more than 248,000,000 gallons of water a year.”
Photo by Lara Marie Rauschert-Mcfarland

Florida’s Geographic and Geologic Challenges

By Maria Rose, Communications Intern, FracTracker Alliance

FracTracker has received numerous emails and phones calls wondering about unconventional drilling activity in Florida. Part of the concern related to fracking in the Sunshine State stems from Florida’s unique geographic and geologic characteristics, including a variety of environmental, geologic, and social issues that make drilling a very different challenge from other states. This article provides a brief compilation and explanation of those issues.

Everglades & Big Cypress National Preserve

Everglades

FL Everglades. Photo: Lara Marie Rauschert-Mcfarland, 2013.

Florida is home to the Everglades and the Big Cypress National Preserve, two locations that have a unique climate, assortment of wildlife, and diversity of fauna. Drilling has occurred in Southwest Florida since the 1940s,2 but it has been contained to traditional vertical drilling, until recently. The transition to more extreme methods of extraction, such as acid or hydraulic fracturing, may have more severe consequences on the fragile environment. The current rules and regulations in place are specific to vertical drilling, not focused on the distinct risks of fracking.2

Citizens have expressed concern that more drilling, and more extreme drilling, may contaminate regional groundwater and disrupt the habitat of the animals in the area. The endangered Florida panther is one species of particular concern; there are plans to drill close to the Florida Panther National Wildlife Refuge on the western edge of the Everglades. Drilling requires a host of preparation and set up, including clearing out areas, building roads, and seismic testing for underground reserves. Both animals and the environment can be disturbed or destroyed by these processes, whether it is from accidental spills from drilling, clearing out forested areas, or road traffic.3

Currently, there are 350,000 acres in southwest Florida leased for seismic testing to determine what areas underground have the most promising oil reserves: 115,00 acres in the greater Everglades by the company Tocala for dynamite blasting, and 234,510 acres in the Big Cypress National Park by Burnett Oil Co., for testing with “thumper trucks”.3 Thumper trucks drop heavy weights on the ground and use the vibrations to estimate oil reserves there. These weights have the potential to fracture the crust over porous limestone formations that hold aquifers, where people get their drinking water.4

 References and Resources

  1. Senator Nelson on Drilling 
  2. Florida Halts Fracking Near Everglades 
  3. Concern Over Plans to Drill for Oil in the Everglades 
  4. Senator Nelson Prevents Oil Drilling in Southwest Florida 

Water

The natural gas drilling industry requires large amounts of water to frack wells, using approximately four million gallons of fresh water per well.4 The water becomes extremely saline from the elements that mix with the water and earth underground. This fluid will also contain frac fluid chemicals added by the industry – some of which are toxic.3 After the drilling process is complete, the resulting waste must then be treated and disposed of properly either via deep well injection sites, limited reuse, recycling, and/or landfills. The potential for contamination of underground aquifers or aboveground mixing with freshwater sources is an important risk to consider.2

Florida has an already sensitive relationship with water. Being so close to the ocean, Florida often bears the brunt of natural disasters such as hurricanes and heavy storms, which all pose threats to freshwater sources above ground. There is also a high water table in Florida that lies directly under and very close to the Sunniland Basin, a layer of fossil fuel rich rock that is of interest to drillers. Drilling in the area, if done hastily, could contaminate a very important fresh water source.1

References and Resources

  1. Legislators Prepare for Potential Fracking in Florida 
  2. Drilling for Natural Gas Jeopardizes Clean Water 
  3. Environment America-Fracking By the Numbers
  4. Oil and Gas Extraction and Hydraulic Fracturing
  5. EPA Oil and Gas Production Wastes

Tourism

For Dr. Karen Dwyer, a concerned citizen of Collier County, the issue of parks and water also ties in to one of Florida’s most important industries: tourism. As Dwyer sees it, if what draws crowds to the state is diminished — the natural beauty of the Everglades and beaches and water — then tourism will falter. The communities impacted by the 2010 BP Gulf Oil Spill can attest to this fact. Small Florida towns near drilling activity  that rely on the income generated by tourism could fall into obscurity.

“People rely on touristy things here,” Dwyer said. “If people aren’t going to come here, we’re going to be a ghost town. If we have a huge accident, we’re not going to have [tourism anymore].”1

Reference:

  1. Interview with Dr. Karen Dwyer, Wednesday June 11th.

Karst Formations

Karst geologic formations visible near a spring. Photo: Richard Gant

Karst geologic formations visible near spring. Photo: Richard Gant

In addition to the unique environmental landscape, need for water, and dependence on tourism, Florida also has a vulnerable geology. The majority of the rock formation underground is made up of sand and limestone, which erodes and dissolves easily both above and below ground from exposure to rainwater. This feature causes karst formations in the rock, leading to sinkholes and fractures in the ground. There is some concern that the drilling processes required to access the gas might disturb the already sensitive environment and cause more stress or damage in areas already affected by sinkholes. Karst geology also has potential for increased aquifer contamination; if the ground is extremely porous, then water — and therefore, other chemicals and radioactive materials — may move through the ground more easily than in other geologies and contaminate water sources.

 References and Resources:

  1. Florida Development and Legislation
  2. USGS – The Science of Sinkholes
  3. Florida Hydraulic Fracturing

Demographics

Environmental justice can be a challenge that accompanies oil and gas drilling at times, defined as the inequitable distributions of environmental burdens. In Florida, we see a potential example of environmental justice, as the drilling completed thus far has dominantly affected low-income communities such as Collier County. Collier County has a large proportion of older, retired families, as well as younger families that may hold multiple jobs and relatively low incomes. In these communities, people are less resistant to the introduction of large, new industries that promise economic growth, since opportunities for such economic stimulation are rare. Similarly, people are less resistant to these issues simply because they may not have enough influence or understanding to reject such risky industries. It is clear then, that impoverished or under-stimulated communities often have to deal with the repercussions – environmentally, economically, and socially – of industry presence more than in places where people can afford and know how to repel industries that may pose environmental risks.

 References and Resources

  1. Florida Census 
  2. Florida County Profile
  3. Environmental Racism

Demographics content originated from interview with Pamela Duran, Monday June 30th.

Offshore oil and gas exploration federally approved

By Karen Edelstein, NY Program Coordinator

Right whale (Eubalaena glacialis) with calf

Background

Drilling in the Atlantic Ocean off the coast of the United States has been off-limits for nearly four decades. However, last Friday, the Obama administration’s Bureau of Ocean Energy Management (BOEM) opened the Atlantic outer continental shelf for oil and gas exploration starting in 2018, with oil production commencing in 2026. In a December 2013 report by the American Petroleum Institute (API) , API estimated that offshore exploration and federal lease sales could generate $195 billion between 2017 and 2035.

Problems for marine mammals, sea turtles, fish

Aside from the inherent risks of catastrophic drilling accidents similar to BP’s Deepwater Horizon in April 2010, open ocean oil and gas exploration can pose severe problems for marine life. Environmentalists have voiced alarm over the techniques used to explore for hydrocarbons deep below the ocean floor. Using “sonic cannons” or “‘seismic airguns,” pulses of sound are directed at the sea bottom to detect hydrocarbon deposits.

Underwater communication by marine mammals, such as whales and dolphins, relies on sound transmission over long distances — sometimes thousands of miles. These animals use sound to navigate, find mates and food, and communicate with each other. Noise pollution by common ships and supertankers is known to disrupt and displace marine mammals, but naval sonar has been documented as a cause of inner ear bleeding, hearing loss, tissue rupture, and beach strandings. According to the Ocean Mammal Institute:

These sonars – both low -frequency (LFAS) and mid -frequency can have a source level of 240 dB, which is one trillion times louder than the sounds whales have been shown to avoid. One scientist analyzing underwater acoustic data reported that a single low frequency sonar signal deployed off the coast of California could be heard over the entire North Pacific Ocean.

Natural Resources Defense Council also expressed concern over naval sonar: “By the Navy’s own estimates, even 300 miles from the source, these sonic waves can retain an intensity of 140 decibels – a hundred times more intense than the level known to alter the behavior of large whales.”

As destructive as naval sonar may be, oil and gas exploration sonic cannons–also known as seismic airguns– (at 216 – 230 dB) create disruptions to marine life many orders of magnitude greater. Fish and sea turtles are also affected, with catch rates of fish decreasing up to 70% when airguns were used in a commercial fishing area, according to a study by the Norwegian Institute of Marine Research.

The intensity and duration of the sonic cannon pulses during oil and gas exploration are an important factor in this equation. According to the Huffington Post, “The sonic cannons are often fired continually for weeks or months, and multiple mapping projects are expected to be operating simultaneously as companies gather competitive, secret data.” Collateral damage for the exploration is far from insignificant, the article continues:

The bureau’s environmental impact study estimates that more than 138,000 sea creatures could be harmed, including nine of the 500 north Atlantic right whales remaining in the world. Of foremost concern are endangered species like these whales, which give birth off the shores of northern Florida and southern Georgia before migrating north each year. Since the cetaceans are so scarce, any impact from this intense noise pollution on feeding or communications could have long-term effects, Scott Kraus, a right whale expert at the John H. Prescott Marine Laboratory in Boston, said.

‘No one has been allowed to test anything like this on right whales,” Kraus said of the seismic cannons. “(The Obama administration) has authorized a giant experiment on right whales that this country would never allow researchers to do.’

North Atlantic right whales are one of the most endangered species of cetaceans in the world.

Map of ranges of marine mammals potentially affected and towns opposing sonic cannon exploration for oil and gas

Although currently, the waters off New Jersey and New England are off-limits for exploration, North Carolina, South Carolina, and Virginia encouraged the federal government to open their off-shore waters for oil and gas surveys. Nevertheless,  many ocean-front communities have come out strongly against the use of sonic cannons and their impacts on marine life. To date, 15 communities from New Jersey to Florida have passed resolutions opposing this form of oil and gas exploration.

FracTracker has mapped the locations of these communities, with pop-up links to the resolutions that were passed, as well as the ranges of 17 marine mammals found along the Atlantic seaboard of the US.  These data come from the International Union for Conservation of Nature (IUCN) 2014 Red List of Threatened Species. You can toggle ranges on and off by going to the “Layers” drop-down menu at the top of the map. The default presentation for this map currently shows only the range of North Atlantic right whales. For a full-screen version of this map, with access to the other marine mammal ranges, click here.

Photo by the NY Times

In Solidarity With Argentina

Update: The Indiegogo crowdfunding campaign for this initiative ended on August 20, 2014

An International Expedition to Address the Perils of Oil & Gas Extraction

Photo by the NY Times

Signs point to exploration areas in the Vaca Muerta, or Dead Cow, a field in the Patagonian desert where Chevron is currently drilling fracking exploratory wells. (Photo by NY Times)

People in Argentina are concerned about fracking increasing in their country. They are aware of the impacts to people’s health and the environment that oil and gas fracking has caused – spills, leaks and explosions; air and water pollution; nausea, headaches and other health problems from toxic exposure; destruction of forests and parklands; increased earthquake risks.

They want to know the truth from those who have lived and worked near oil and gas operations in the U.S. Argentina sin Fracking has invited Earthworks, FracTracker Alliance and Ecologic Institute to come to Argentina to tell the real story.

To help fund this initiative, we have launched an Indiegogo campaign. Your contributions will make it possible for experts from these 3 American organizations to travel to Argentina, and share their experiences from the U.S. with fracking. We’ll hold several workshops in Buenos Aires and other affected communities, such as the Vaca Muerta region, where fracking is already occurring, and visit others who face the potential dangers of fracking.

With your help, we can help Argentina avoid making the mistakes that we’ve made in the U.S., and we can connect Argentinians to a new international network of environmental groups fighting fossil fuel development worldwide.

Geopolitics, Shale Gas, and Pipelines

By Ted Auch, OH Program Coordinator, FracTracker Alliance

The “Why?”

Recently, the US has proposed to ship American shale gas abroad to buffer Europe’s 15-30% reliance on Russian gas imports in the face of the annexation of Crimea by Russia – and parallel 80% increases in LNG prices paid by Eastern Europeans to Russia’s Gazprom. The FracTracker map below illustrates all proposed and existing hydrocarbon pipelines across South America, Africa, Europe, the Persian Gulf, and Asia/Russia1. Creating such a map seems the least we could do given that this conflict has been called the “worst crisis with the West since the end of the Cold War.” The situation in Crimea is a chronic crisis; folks like Oxford University’s Jonathan Stern have suggested:

  1. Ukraine owes Gazprom $2 billion for already delivered hydrocarbons,
  2. Russia can easily turn their supplies to Japan which will pay a premium relative to what they are getting from the European Union, and
  3. The duration of European oil and gas contracts with Gazprom, which extend 15-35 years, can’t be broken (Einhorn, 2014; Henderson and Stern, 2014).

The rhetoric framing here in the US has been lead by – and regurgitated by media outlets such as NPR who suggested “Putin Could Send Europe Scrambling For Energy Sources” –  the likes of the Council on Foreign Relations Richard Haass and the Brookings Institution’s Bruce Jones. Both of these entities have the ears of congress domestically and global decision makers at gatherings such as the World Economic Forum in Davos, Switzerland (Gwertzman, 2014; Wade and Rascoe, 2014).

Stepping up hydrocarbon and extraction technologies is not universally espoused:

This is not an immediate-term solution. It’s not even an intermediate-term solution. – Paul Bledsoe, German Marshal Fund, in The New York Times

Fracking is unlikely to reduce gas prices to the extent its proponents desire. – London School of Economics (LSE) (Krauss, 2014; McDonnell, 2014)

Originally, shale gas production was proposed as a way for the US to become “energy independent,” but the dogma has rapidly and in a coordinated fashion shifted to the export of shale gas itself and the technology used to get it out of the ground. This rhetoric is now the focus not just of Washington, DC think tanks but academics (Bordoff, 2014) .

This is a graph depicting global CO2 emissions as a function of per capita Gross Domestic Product (GDP) (US$) across 204 countries CO2 emissions data were gathered from the United Nations Statistics Division (http://unstats.un.org/unsd/ENVIRONMENT/datacollect.htm) and the US Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) (http://cdiac.ornl.gov/trends/emis/meth_reg.html)

Figure 1a) Global CO2 Per Capita Emissions (Tons) Vs Per Capita Gross Domestic Product (GDP) (US $)

The above regions are ripe for – or currently experiencing – significant political uprisings from the Niger Delta and Venezuela to the percolating anger associated with increasing economic stratification and political elite disconnect in countries like Saudi Arabia, Libya, Yemen, Pakistan, Mediterranean Africa writ large, Sudan, and Oman2. Often this discontent is emanating out of citizens’ concerns as to where oil revenues are going and how often the hydrocarbon largesse is concentrated in a handful of political elites and/or oligarchs (Nossiter, 2014). The EIA estimates Russia and China sit atop an estimated 107 billion barrels of shale oil and 1,400 TCF of shale gas. Much of this resource will be required if they are to continue > 2-5% Gross Domestic Product (GDP) growth. The remainder they will undoubtedly use as a cudgel to deflect the west’s suggestions and/or demands within their borders or their “near abroad.” In the case of Russia, the “near abroad” generally refers to the eight former Communist pliable nations – and are incidentally home to nontrivial shale oil and gas reserves – that act as a physical and ideological buffer between them and NATO/European Union states. In an effort to combat the asymmetric hydrocarbon supply and demand issues and secure access to the sizable shale reserves in eastern Europe, the European Union continues to push the European Neighborhood Policy meant to create a “ring of friends”3  – with Ukraine just the latest significant test and the only successes being Tunisia and Moldova (Charlemagne, 2014). With respect to China, their “near abroad” nations include shale oil and gas rich nations like Indonesia, Thailand, Myanmar, Cambodia, and Vietnam, along with ex-Soviet region Central Asian countries which provide China with 80% of its natural gas needs. However, the east-west tug of war has come down to the willingness of the east to offer larger instant loans, cheaper gas, and labor/technology needed to develop pipeline networks. The nexus between these two eastern giants is the proposed – and recently agreed upon – $400 billion Sino-Russian energy cooperation natural gas and oil pipeline. This proposal will stretch across heretofore relatively undisturbed and isolated communities and the ecosystems they have evolved with across the Eurasian Steppe and Siberia (Einhorn, 2014).

This is a graph depicting global CO2 emissions as a function of Oil Consumption Per day (Barrels) across 204 countries CO2 emissions data were gathered from the United Nations Statistics Division (http://unstats.un.org/unsd/ENVIRONMENT/datacollect.htm) and the US Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) (http://cdiac.ornl.gov/trends/emis/meth_reg.html) Oil consumption data drawn from EnerDatas' World Energy Statistics "Global Energy Statistical Yearbook 2013" (http://yearbook.enerdata.net/)

Figure 1b) Global CO2 Per Capita Emissions (Tons) Vs Oil Consumption Per Day (Barrels) across 204 countries

The fomenting anger and geopolitical combativeness that result from these conditions put the global hydrocarbon transport network at risk. Analogies to R.A. Radford’s The Economic Organization of a P.O.W. Camp can be made here, where the economy that Mr. Radford created flourished until the input stream from the Red Cross stopped. It was at this time that the economy collapsed due to its singular reliance on one input source. Similar analogies exist across emerging, P5+1, and frontier markets worldwide, with many countries largely dependent upon hydrocarbon imports or exports to stoke GDP. Such imports, along with oil consumption, account for 98% of per country CO2 emissions (Table 1 below, Figure 1a-b).  Revolution or even temporary and targeted political instability will fuel the type of hydrocarbon transport/production disruption that will produce the kind of jump condition described by Mr. Radford. A jump condition occurs in situations when suitable hydrocarbon stocks/flows are lost, pipelines are turned off, and alternative transport channels are deemed too perilous. Such a crisis is one that no industrialized or industrializing nation is prepared to manage, making the 2007-08 Financial Crisis look and feel like child’s play. Thus, many private and state actors are proposing new and expanded hydrocarbon pipeline networks to reduce reliance on single-large networks emanating from or traveling through volatile regions. Proposals range from the large Nabucco pipeline proposal connecting Asia and Europe or the Nord Stream AG Baltic Sea Gas Pipeline to small regional or inter-state proposals in Africa, the Persian Gulf, and Eastern Europe.

The “When?”

With this map, which was initiated in January 2014, we have attempted to accurately quantify as many existing and proposed pipeline routes as possible in Europe, Africa, South America, Asia, and the Persian Gulf.  We will be updating this map periodically, and it should be noted that all layers are predetermined aggregations of regional pipelines. Given the recent EIA global shale oil and gas estimates, it is only a matter of time before: a) European nations like Germany, Ukraine, Poland, and Romania begin to explore shale gas extraction in the name of “energy independence,” and b) Argentina hands over the proverbial keys to its 16.2-22.5 billion barrels of oil in the Vaca Muerta shale basin to the likes of Shell or Repsol-YPF (Canty, 2011; Gonzalez and Cancel, 2013; Romero and Krauss, 2013; Staff, 2013). This conversation will be accompanied by additional pipeline proposals for inter- and intra-region transport, all of which we will incorporate into this map on a quarterly basis. If you know of proposals that are not currently shown on the map, please let us know.

Table 1. Major Worldwide Flows of Oil (Thousand Barrels Per Day).

Country

Production (a)

Consumption (b)

(b)/(a)

Export

Import

Saudi Arabia

11726

2861

24

8865

United States

11105

18490

167

7386

Russia

10397

3195

31

7201

China

4372

10277

235

5904

Canada

3856

2281

59

1576

Iran

3589

1709

48

1880

UAE

3213

618

19

2595

Iraq

2987

752

25

2235

Mexico

2936

2144

73

Kuwait

2797

383

14

2414

Brazil

2652

2807

106

Nigeria

2524

270

11

2254

Venezuela

2489

777

31

1712

Norway

1902

218

12

1684

Algeria

1875

328

18

1547

Japan

4726

4591

India

3622

2632

Germany

2388

2219

South Korea

2301

2240

France

1740

1668

Indonesia

1590

616

United Kingdom

1503

Angola

1738

Qatar

1389

Kazakhstan

1355

Libya

Singapore

1360

Spain

1260

Italy

1198

Taiwan

1058

Netherlands

949

Turkey

614

Belgium

607

Compiled from U.S. Energy Information Administration World Overview (http://www.eia.gov/countries/)


References

Bordoff, J., 2014. Adding Fuel to the Fire: How the American shale gas boom can weaken Russia’s hand in Ukraine, Foreign Policy Magazine, Washington, DC.

Canty, D., 2011. Repsol hails largest ever 927 million bbl oil find, ArabianOilandGas.com. ITP Business Portal.

Charlemagne, 2014. How to be good neighbours: Ukraine is the biggest test of the EU’s policy towards countries on its borderlands, The Economist, London, UK.

Einhorn, B., 2014. How the Ukraine Crisis Could Help Clear Beijing’s Smog, Bloomberg Businessweek. Bloomberg LP, New York, NY.

Gonzalez, P., Cancel, D., 2013. Shell to Triple Argentine Shale Spending as Winds Change, Bloomberg Magazine. Bloomberg LP, New York, NY.

Gwertzman, B., 2014. How to respond to Ukraine’s Crisis, Council on Foreign Relations, Washington, DC.

Henderson, J., Stern, J., 2014. The Potential Impact on Asia Gas Markets of Russia’s Eastern Gas Strategy, Oxford Energy Comment. The Oxford Institute for Energy Studies, Oxford, UK, p. 13.

Klein, N., 2008. The Shock Doctrine: The Rise of Disaster Capitalism. Picador.

Klein, N., 2014. Why US Fracking Companies Are Licking Their Lips Over Ukraine: From climate change to Crimea, the natural gas industry is supreme at exploiting crisis for private gain – what I call the shock doctrine, The Guardian, London, UK.

Krauss, C., 2014. U.S. Gas Tantalizes Europe, but It’s Not a Quick Fix, The New York Times, New York, NY.

McDonnell, A., 2014. Fracking is unlikely to reduce gas prices to the extent its proponents desire, The London School of Economics and Political Science – British Politics and Policy. The London School of Economics, London, UK.

Nossiter, A., 2014. Nigerians Ask Why Oil Funds Are Missing, The New York Times, New York, NY.

Romero, S., Krauss, C., 2013. An Odd Alliance in Patagonia, The New York Times, New York, NY.

Staff, 2013. Argentina’s YPF: Swallowed Pride, The Economist, London, UK.

Wade, T., Rascoe, A., 2014. Global gas trade may soften foreign policy of Russia, China, Reuters, New York, NY.


[2]  The EIA estimates Mediterranean Africa contains 5,772 TCF of estimated wet shale natural gas and 1,373,770 million barrels of oil, the Former Soviet Union 4,738 TCF and 310,567 million barrels, and South America 2,465 TCF and 643,864 million barrels 73% of which is in Brazil and Argentina’s Vaca Muerta.

[3] According to The Economist “The Europeans should also rethink the neighbourhood policy, which lumps together disparate countries merely because they happen to be nearby. In the south it may have to devise a wider concept of its interests stretching out to the Sahel, the Horn of Africa and the Middle East. Here Europe has no real friends, lots of acquaintances and not a few enemies. To the east it needs better ways of helping those who want to move closer to the EU.”

WV Field Visits 2013

H 2 O Where Did It Go?

By Mary Ellen Cassidy, Community Outreach Coordinator, FracTracker Alliance

A Water Use Series

Many of us do our best to stay current with the latest research related to water impacts from unconventional drilling activities, especially those related to hydraulic fracturing.  However, after attending presentations and reading recent publications, I realized that I knew too little about questions like:

  • How much water is used by hydraulic fracturing activities, in general?
  • How much of that can eventually be used for drinking water again?
  • How much is removed from the hydrologic cycle permanently?

To help answer these kinds of questions, FracTracker will be running a series of articles that look at the issue of drilling-related water consumption, the potential community impacts, and recommendations to protect community water resources.

Ceres Report

We have posted several articles on water use and scarcity in the past here, here, here and here.  This article in the series will share information primarily from Monika Freyman’s recent Ceres report, Hydraulic Fracturing & Water Stress: Water Demand by the Numbers, February 2014.  If you hunger for maps, graphs and stats, you will feast on this report. The study looks at oil and gas wells that were hydraulically fractured between January 2011 and May 2013 based on records from FracFocus.

Class 2 UI Wells

Class 2 UI Wells

Water scarcity from unconventional drilling is a serious concern. According to Ceres analysis, horizontal gas production is far more water intensive than vertical drilling.  Also, the liquids that return to the surface from unconventional drilling are often disposed of through deep well injection, which takes the water out of the water cycle permanently.   By contrast, water uses are also high for other industries, such as agriculture and electrical generation.  However, most of the water used in agriculture and for cooling in power plants eventually returns to the hydrological cycle.  It makes its way back into local rivers and water sources.

In the timeframe of this study, Ceres reports that:

  • 97 billion gallons of water were used, nearly half of it in Texas, followed by Pennsylvania, Oklahoma, Arkansas, Colorado and North Dakota, equivalent to the annual water need  of 55 cities with populations of ~ 5000 each.
  • Over 30 counties used at least one billion gallons of water.
  • Nearly half of the wells hydraulically fractured since 2011 were in regions with high or extremely high water stress, and over 55% were in areas experiencing drought.
  • Over 36% of the 39,294 hydraulically fractured wells in the study overlay regions experiencing groundwater depletion.
  • The largest volume of hydraulic fracturing water, 25 billion gallons, was handled by service provider, Halliburton.

Water withdrawals required for hydraulic fracturing activities have several worrisome impacts. For high stress and drought-impacted regions, these withdrawals now compete with demands for drinking water supplies, as well as other industrial and agricultural needs in many communities.  Often this demand falls upon already depleted and fragile aquifers and groundwater.  Groundwater withdrawals can cause land subsidence and also reduce surface water supplies. (USGS considers ground and surface waters essentially a single source due to their interconnections).  In some areas, rain and snowfall can recharge groundwater supplies in decades, but in other areas this could take centuries or longer.  In other areas, aquifers are confined and considered nonrenewable.   (We will look at these and additional impact in more detail in our next installments.)

Challenges of documenting water consumption and scarcity

Tracking water volumes and locations turns out to be a particularly difficult process.  A combination of factors confuse the numbers, like conflicting data sets or no data,  state records with varying criteria, definitions and categorization for waste, unclear or no records for water volumes used in refracturing wells or for well and pipeline maintenance.

Along with these impediments, “chain of custody” also presents its own obstacles for attempts at water bookkeeping. Unconventional drilling operations, from water sourcing to disposal, are often shared by many companies on many levels.  There are the operators making exploration and production decisions who are ultimately liable for environmental impacts of production. There are the service providers, like Halliburton mentioned above, who oversee field operations and supply chains. (Currently, service providers are not required to report to FracFocus.)  Then, these providers subcontract to specialists such as sand mining operations.  For a full cradle-to-grave assessment of water consumption, you would face a tangle of custody try tracking water consumption through that.

To further complicate the tracking of this industry’s water, FracFocus itself has several limitations. It was launched in April 2011 as a voluntary chemical disclosure registry for companies developing unconventional oil and gas wells. Two years later, eleven states direct or allow well operators and service companies to report their chemical use to this online registry. Although it is primarily intended for chemical disclosure, many studies, like several of those cited in this article, use its database to also track water volumes, simply because it is one of the few centralized sources of drilling water information.  A 2013 Harvard Law School study found serious limitations with FracFocus, citing incomplete and inaccurate disclosures, along with a truly cumbersome search format.  The study states, “the registry does not allow searching across forms – readers are limited to opening one PDF at a time. This prevents site managers, states, and the public from catching many mistakes or failures to report. More broadly, the limited search function sharply limits the utility of having a centralized data cache.”

To further complicate water accounting, state regulations on water withdrawal permits vary widely.  The 2011 study by Resources for the Future uses data from the Energy Information Agency to map permit categories.  Out of 30 states surveyed, 25 required some form of permit, but only half of these require permits for all withdrawals. Regulations also differ in states based on whether the withdrawal is from surface or groundwater.  (Groundwater is generally less regulated and thus at increased risk of depletion or contamination.)  Some states like Kentucky exempt the oil and gas industry from requiring withdrawal permits for both surface and groundwater sources.

Can we treat and recycle oil and gas wastewater to provide potable water?

WV Field Visits 2013Will recycling unconventional drilling wastewater be the solution to fresh water withdrawal impacts?  Currently, it is not the goal of the industry to recycle the wastewater to potable standards, but rather to treat it for future hydraulic fracturing purposes.  If the fluid immediately flowing back from the fractured well (flowback) or rising back to the surface over time (produced water) meets a certain quantity and quality criteria, it can be recycled and reused in future operations.  Recycled wastewater can also be used for certain industrial and agricultural purposes if treated properly and authorized by regulators.  However, if the wastewater is too contaminated (with salts, metals, radioactive materials, etc.), the amount of energy required to treat it, even for future fracturing purposes, can be too costly both in finances and in additional resources consumed.

It is difficult to find any peer reviewed case studies on using recycled wastewater for public drinking purposes, but perhaps an effective technology that is not cost prohibitive for impacted communities is in the works. In an article in the Dallas Business Journal, Brent Halldorson, a Roanoke-based Water Management Company COO, was asked if the treated wastewater was safe to drink.  He answered, “We don’t recommend drinking it. Pure distilled water is actually, if you drink it, it’s not good for you because it will actually absorb minerals out of your body.”

Can we use sources other than freshwater?

How about using municipal wastewater for hydraulic fracturing?  The challenge here is that once the wastewater is used for hydraulic fracturing purposes, we’re back to square one. While return estimates vary widely, some of the injected fluids stay within the formation.  The remaining water that returns to the surface then needs expensive treatment and most likely will be disposed in underground injection wells, thus taken out of the water cycle for community needs, whereas municipal wastewater would normally be treated and returned to rivers and streams.

Could brackish groundwater be the answer? The United States Geological Survey defines brackish groundwater as water that “has a greater dissolved-solids content than occurs in freshwater, but not as much as seawater (35,000 milligrams per liter*).” In some areas, this may be highly preferable to fresh water withdrawals.  However, in high stress water regions, these brackish water reserves are now more likely to be used for drinking water after treatment. The National Research Council predicts these brackish sources could supplement or replace uses of freshwater.  Also, remember the interconnectedness of ground to surface water, this is also true in some regions for aquifers. Therefore, pumping a brackish aquifer can put freshwater aquifers at risk in some geologies.

Contaminated coal mine water – maybe that’s the ticket?  Why not treat and use water from coal mines?  A study out of Duke University demonstrated in a lab setting that coal mine water may be useful in removing salts like barium and radioactive radium from wastewater produced by hydraulic fracturing. However, there are still a couple of impediments to its use.  Mine water quality and constituents vary and may be too contaminated and acidic, rendering it still too expensive to treat for fracturing needs. Also, liability issues may bring financial risks to anyone handling the mine water.  In Pennsylvania, it’s called the “perpetual treatment liability” and it’s been imposed multiple times by DEP under the Clean Streams Law. Drillers worry that this law sets them up somewhere down the road, so that courts could hold them liable for cleaning up a particular stream contaminated by acid mine water that they did not pollute.

More to come on hydraulic fracturing and water scarcity

Although this article touches upon some of the issues presented by unconventional drilling’s demands on water sources, most water impacts are understood and experienced most intensely on the local and regional level.   The next installments will look at water use and loss in specific states, regions and watersheds and shine a light on areas already experiencing significant water demands from hydraulic fracturing.  In addition, we will look at some of the recommendations and solutions focused on protecting our precious water resources.

Class II Oil and Gas Wastewater Injection and Seismic Hazards in CA

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance Shake Ground Cover

In collaboration with the environmental advocacy groups Earthworks, Center for Biological Diversity, and Clean Water Action, The FracTracker Alliance has completed a proximity analysis of the locations of California’s Class II oil and gas wastewater injection wells to “recently” active fault zones in California. The results of the analysis can be found in the On Shaky Ground report, available for download at www.ShakyGround.org.1

Production of oil and natural gas results in a large and growing waste stream. Using current projections for oil development, the report projects a potential 9 trillion gallons of wastewater over the lifetime of the Monterey shale. In California the majority of wastewater is injected deep underground for disposal in wells deemed Class II wastewater injection.  The connection between seismic activity and underground injections of fluid has been well established, but with the current surge of shale resource development the occurrence of earthquakes in typically seismically inactive regions has increased, including a recent event in Ohio covered by the LA Times.   While both hydraulic fracturing and wastewater injection wells have been linked to the induction of seismic activity, the impacts of underground injection wells used for disposal are better documented and linked to larger magnitude earthquakes.

Therefore, while hydraulic fracturing of oil and gas wells has also been documented to induce seismic activity, the focus of this report is underground injection of waste fluids.

Active CA Faults

A spatial overview of the wastewater injection activity in California and recently active faults can be viewed in Figure 1, below.


Figure 1. California’s Faults and Wastewater Injection Wells. With this and all maps on this page, click on the arrows in the upper right hand corner of the map to view it fullscreen and to see the legend and more details.

The focus of the On Shaky Ground report outlines the relationship between does a thorough job reviewing the literature that shows how the underground injection of fluids induces seismic activity.  The proximity analysis of wastewater injection wells, conducted by The FracTracker Alliance, provides insight into the spatial distribution of the injection wells.  In addition, the report M7.8 earthquake along the San Andreas fault could cause 1,800 fatalities and nearly $213 billion in economic damages.2  To complement the report and provide further information on the potential impacts of earthquakes in California, FracTracker created the maps in Figure 2 and Figure 3.

Shaking Assessments

Figure 2 presents shaking amplification and shaking hazards assessments. The dataset is generated from seismic evaluations.  When there is an earthquake, the ground will amplify the seismic activity in certain ways.  The amount of amplification is typically dependent on distance to the earthquake event and the material that comprises the Earth’s crust.  Softer materials, such as areas of San Francisco built on landfills, will typically shake more than areas comprised of bedrock at the surface.  The type of shaking, whether it is low frequency or high frequency will also present varying hazards for different types of structures.  Low frequency shaking is more hazardous to larger buildings and infrastructure, whereas high frequency events can be more damaging to smaller structure such as single family houses.  Various assessments have been conducted throughout the state, the majority by the California Geological Survey and the United States Geological Survey.


Figure 2. California Earthquake Shaking Amplification and Class II Injection Wells

Landslide Hazards

Below, Figure 3. Southern California Landslide and Hazard Zones expands upon the map included in the On Shaky Ground report; during an earthquake liquefaction of soil and landslides represent some of the greatest hazards.  Liquefaction refers to the solid earth becoming “liquid-like”, whereas water-saturated, unconsolidated sediments are transformed into a substance that acts like a liquid, often in an earthquake. By undermining the foundations of infrastructure and buildings, liquefaction can cause serious damage. The highest hazard areas shown by the liquefaction hazard maps are concentrated in regions of man-made landfill, especially fill that was placed many decades ago in areas that were once submerged bay floor. Such areas along the Bay margins are found in San Francisco, Oakland and Alameda Island, as well as other places around San Francisco Bay. Other potentially hazardous areas include those along some of the larger streams, which produce the loose young soils that are particularly susceptible to liquefaction.  Liquefaction risks have been estimated by USGS and CGS specifically for the East Bay, multiple fault-slip scenarios for Santa Clara and for all the Bay Area in separate assessments.  There are not regional liquefaction risk estimate maps available outside of the bay area, although the CGS has identified regions of liquefaction and landslide hazards zones for the metropolitan areas surrounding the Bay Area and Los Angeles.  These maps outline the areas where liquefaction and landslides have occurred in the past and can be expected given a standard set of conservative assumptions, therefore there exist certain zoning codes and building requirements for infrastructure.


Figure 3. California Liquefaction/Landslide Hazards and Class II Injection Wells

Press Contacts

For more information about this report, please reach out to one of the following media contacts:

Alan Septoff
Earthworks
(202) 887-1872 x105
aseptoff@earthworksaction.org
Patrick Sullivan
Center for Biological Diversity
(415) 632-5316
psullivan@biologicaldiversity.org
Andrew Grinberg
Clean Water Action
(415) 369-9172
agrinberg@cleanwater.org

References

  1. Arbelaez, J., Wolf, S., Grinberg, A. 2014. On Shaky Ground. Earthworks, Center for Biological Diversity, Clean Water Action. Available at ShakyGround.org
  2. Jones, L.M. et al. 2008. The Shakeout Scenario. USGS Open File Report 2008-1150. U.S. Department of the Interior, U.S. Geological Survey.

 

North American Pipeline Proposal Map

By Ted Auch, PhD – OH Program Coordinator, FracTracker Alliance

With all the focus on the existing TransCanada Keystone XL pipeline – as well as the primary expansion proposal recently rejected by Lancaster County, NB Judge Stephanie Stacy and more recently the Canadian National Energy Board’s approval of Enbridge’s Line 9 pipeline – we thought it would be good to generate a map that displays related proposals in the US and Canada.

North American Proposed Pipelines and Current Pipelines


To view the fullscreen version of this map along with a legend and more details, click on the arrows in the upper right hand corner of the map.

The map was last updated in October 2014.

Pipeline Incidents

The frequency and intensity of proposals and/or expansions of existing pipelines has increased in recent years to accompany the expansion of the shale gas boom in the Great Plains, Midwest, and the Athabasca Tar Sands in Alberta. This expansion of existing pipeline infrastructure and increased transport volume pressures has resulted in significant leakages in places like Marshall, MI along the Kalamazoo River and Mayflower, AR. Additionally, the demand for pipelines is rapidly outstripping supply – as can be seen from recent political pressure and headline-grabbing rail explosions in Lac-Mégantic, QC, Casselton, ND, Demopolis, AL, and Philadelphia.1 According to rail transport consultant Anthony Hatch, “Quebec shocked the industry…the consequences of any accident are rising.” This sentiment is ubiquitous in the US and north of the border, especially in Quebec where the sites, sounds, and casualties of Lac-Mégantic will not soon be forgotten.

Improving Safety Through Transparency

It is imperative that we begin to make pipeline data available to all manner of parties ex ante for planning purposes. The only source of pipeline data historically has been the EIA’s Pipeline Network. However, the last significant update to this data was 7/28/2011 – meaning much of the recent activity has been undocumented and/or mapped in any meaningful way. The EIA (and others) claims national security is a primary reason for the lack of data updates, but it could be argued that citizens’ right-to-know with respect to pending proposals outweighs such concerns – at least at the county or community level. There is no doubt that pipelines are magnets for attention, stretching from the nefarious to the curious. Our interest lies in filling a crucial and much requested data gap.

Metadata

Pipelines in the map above range from the larger Keystone and Bluegrass across PA, OH, and KY to smaller ones like the Rex Energy Seneca Extension in Southeast Ohio or the Addison Natural Gas Project in Vermont. In total the pipeline proposals presented herein are equivalent to 46% of EIA’s 34,133 pipeline segment inventory (Table 1).

Table 1. Pipeline segments (#), min/max length, total length, and mean length (miles).

Section

#

Min

Max

Mean

Sum

Bakken

34

18

560

140

4,774

MW East-West

68

5

1,056

300

20,398

Midwest to OK/TX

13

13

1,346

307

3,997

Great Lakes

5

32

1,515

707

3,535

TransCanada

3

612

2,626

1,341

4,021

Liquids Ventures

2

433

590

512

1,023

Alliance et al

3

439

584

527

1,580

Rocky Express

2

247

2,124

1,186

2,371

Overland Pass

6

66

1,685

639

3,839

TX Eastern

15

53

1,755

397

5,958

Keystone Laterals

4

32

917

505

2,020

Gulf Stream

2

541

621

581

1,162

Arbuckle ECHO

25

27

668

217

5,427

Sterling

9

42

793

313

2,817

West TX Gateway

13

1

759

142

1,852

SXL in PA and NY

15

48

461

191

2,864

New England

70

2

855

65

4,581

Spectra BC

9

11

699

302

2,714

Alliance et al

4

69

4,358

2,186

4,358

MarkWest

63

2

113

19

1,196

Mackenzie

46

3

2,551

190

8,745

Total

411

128

1,268

512

89,232

This is equivalent to 46% of the current hydrocarbon pipeline inventory in the US across the EIA’s inventory of 34,133 pipeline segments with a total length of 195,990 miles

The map depicts all of the following (Note: Updated quarterly or when notified of proposals by concerned citizens):

  1. All known North American pipeline proposals
  2. Those pipelines that have yet to be documented by the EIA’s Natural Gas Pipeline Network mapping team
  3. EIA documented pipelines more accurately mapped to the county level (i.e., select northeastern pipelines)
  4. The current Keystone XL pipeline and the Keystone XL expansion proposal rectified to the county level in Nebraska, South Dakota, Oklahoma, and Texas

We generated this map by importing JPEGs into ArcMAP 10.2, we then “Fit To Display”. Once this was accomplished we anchored the image (i.e., georeferenced) in place using a minimum of 10 control points (Note: All Root Mean Square (RMS) error reports are available upon request) and as many as 30-40. When JPEGs were overly distorted we then converted or sought out Portable Network Graphic (PNG) imagery to facilitate more accurate anchoring of imagery.

We will be updating this map periodically, and it should be noted that all layers are a priori aggregations of regional pipelines across the 4 categories above.

Imagery sources:

  1. Northeast – Long Island Sound, Montreal to Portland, Westchester, Spectra Energy Northeast, Maritime Northeast-Algonquin-Texas Eastern, Delaware River Watershed, Northeastern accuracy of existing EIA data, New England Kinder Morgan, Spectra Energy-Tennessee Gas Pipeline Company (TGP)-Portland Natural Gas Transmission System (PNGTS)
  2. Duluth to The Dakotas, NYMarc Pipeline, Mariner East, Millenium Pipeline Company, WBI Energy’s Bakken,
  3. British Columbia – Enbridge, Spectra/BG, Coastal, Tanker Route
  4. Midwest – ATEX and Bluegrass, BlueGrass, BlueGrass Pipeline,
  5. TransCanada/New England – Portland, Financial Post,
  6. Alaska Pipelines Historically
  7. Rail projects and primary transport
  8. Keystone Tar Sands – Canada (website no longer active), United States, Texas-Oklahoma
  9. Gulf Coast – Florida
  10. MarkWest Houston, Liberty, Liberty, Houston and Majorsville,
  11. Texas Oklahoma – Granite Wash Extension,
  12. Ohio – Spectra Energy, Enterprise Products, Kinder Morgan, Buckeye-Kinder Morgan-El Paso, Chesapeake Energy and AEP
  13. The Rockies Express Pipeline (REX)

Reference

1. Krauss, C, & Mouawad, J. (2014, January 25). Accidents Surge as Oil Industry Takes the Train, The New York Times.

 

Ohio Production and Injection Well Firms Map

Our latest Ohio-focused map shows the many companies involved in directional drilling in the state and the contact information for these firms.

Layer Descriptions

1. UNIVERSAL WELL SERVICES

Universal Well Services Inc. is a major firm involved in all manner of directional drilling services with an office in Wooster, OH, one in Allen, KY, six in Pennsylvania, six in Texas, and one in West Virginia

2. LLC & MLP’s

This is an inventory of 410 Ohio directional drilling affiliated LLC and MLP firms and contact information. Seventy-eight percent of these firms are domiciled in Ohio. The other primary states that house these firms are Pennsylvania (22), Texas (23), and West Virginia (9). The Economist wrote of these types of firms:

The move away from the C corporation began in earnest in 1975. Wyoming, that vibrant business hub, adopted a new entity structure, the limited-liability company (LLC). Imported from Panama, it provided the tax treatment of a partnership while preserving the corporate protection from individual liability for company debts and litigation. Other states followed in adopting the model. Businesses were quick to see the advantages. The various new types of firm that have risen in the wake of the LLC… make similar use of partnership structures. They have tended to be industry- or sector-specific, at least to begin with. The energy business has a lot of MLPs not only because it needs capital but because it is an easy place to set them up: since 1987, tax law has allowed “mineral or natural resource” companies to operate as listed partnerships, while withholding that privilege from others. But as with other pass-through structures, the constraints are being lowered and circumvented.

3. DRILLING FIRMS

This is an inventory of 393 Ohio Department of Natural Resources permitted directional and injection drilling firms with single locations and their contact information. Seventy-six percent of these firms are domiciled in Ohio with the other primary states of incorporation being Pennsylvania (15), Texas (14), Michigan (11), and West Virginia (9). Only 3 of these firms listed in the Ohio RBDMS Microsoft Access Database contained correct contact information or addresses. According to ODNR staff – and primary FOIA contact:

… it looks like the [active drillers] list [doesn’t contain] much information on the companies in general…We have mailing information for the operating companies, but a lot of the time they subcontract out to get their drillers. We do not require the information of the drillers they contract.

4. ADDITIONAL DRILLERS

This is an inventory of the 40 known locations for six firms permitted to drill in Ohio. The same lack of contact and address data for these firms were true for this data. The primary firms are Butch’s Rathole and Nomac Drilling Corporation. Given that the ODNR RBDMS does not indicate the actual location from which these companies migrated into the Ohio shale industry we decided to include all known locations for these firms.

5. CANADIAN FIRMS

This is an inventory of the 14 known locations for the 5 Canadian drilling firms permitted in Ohio. The primary firm is Savannah Drilling, which is composed of 10 locations across Alberta and Saskatchewan.

6. AMERICAN SUPPORTING CO.

This is an inventory of 1,837 Ohio energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion. Seventy-five percent (1,386) of these firms are domiciled in Ohio with secondary hotspots in Texas (76), West Virginia (65), Pennsylvania (49), Michigan (34), Colorado (27), Illinois (22), Oklahoma (21), California (16), New York and New Jersey (27), Kentucky (14).

7. ADDITIONAL SUPPORTING CO.

This shows an inventory of 10 Ohio energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion extracted from the ODNR RBDMS that did not contain locational or contact information.

8. CANADIAN SUPPORTING CO.

This is an inventory of 5 (1 company Mar Oil Company was not found) Canadian energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion.

9. BRINE HAULERS

This is an inventory of 505 ODNR permitted brine haulers active in the transport and disposal of hydraulic fracturing waste either via injection or waste landfill disposal. Seventy-six percent of these firms are domiciled in Ohio with the primary cities being Zanesville (18), Cambridge, Wooster, and Millersburg (12 each), Canton and Marietta (11 each), Columbus (9), Jefferson (9), Logan (8), and North Canton and Newark (7 each). Pennsylvania and West Virginia are home to 84 and 32 brine haulers, respectively.