Posts

Radium Watersheds a Risk

By Greg Pace – Columbus Community Bill of Rights, and Julie Weatherington-Rice – Environmental Consultant

columbus_classiimap

Figure 1. Map of Columbus, OH Watersheds and Class II Injection Wells

Most Ohio residents are unaware of the frack fluid deep underground injection occurring north of Columbus, underneath the region’s source water protection watersheds (Figure 1).

Materials injected are liquids that have as much as ten times the salt concentration of sea-water. Mixed with this “brine” solution is a combination from hundreds of chemicals that are used in different stages of horizontal hydraulic fracturing, the process used to extract natural gas, petroleum, and hydrocarbon liquids used to make industrial materials such as plastics. BTEX compounds including benzene are always present in the wastewater, along with formaldehyde, bromides, ethylene glycol (antifreeze), and arsenic, with many other carcinogenic and otherwise highly-toxic substances.

Radioactivity of Shale Gas Wastewater

One of the biggest questions in this mix of toxic disposal is how much radioactive content exists. Radium-226 is most worrisome, as it has a very long half-life (1,600 years). It is water-soluble and, once it enters the human body, seeks to find a home in our bones where it will emit its cell-formation-destabilizing effects for the remainder of our lifetime. This radionuclide is known to cause leukemia, bone cancers, blood disorders, and other diseases.

The state of Ohio does not monitor the content of materials that are injected into our Class II injection wells deep in the ground. This oil and gas waste can come from anywhere, including Pennsylvania’s Marcellus shale, which is the most highly-radioactive geology of all the shale plays in the country. Radium-226 readings as high as 15,000 pico-curies per liter have been read in Marcellus shale brines. The EPA drinking water limit for radium-226 is 5 pico-curies per liter, which puts the Marcellus reading at 3,000 times higher than the drinking water limit.

Exposure through drinking water is a pathway to human disease from radium-226. Once oil and gas waste is disposed of underground in a sandstone or limestone layer, the fluids are subject to down-gradient movement, wicking through capillary action, and seepage over time. This means that the highly radioactive wastewater could eventually end up in our underground drinking water sources, creating radium watersheds. This practice is putting our watersheds at risk from radioactive contamination for hundreds of years, at least.

Can injected fluids migrate?

Depending on whether you confer with a geologist who works with the oil and gas industry, or from an independent geologist, you will get a different opinion on the likelihood of such a pollution event occurring. Industry geologists mostly claim that deep injection leaves very low risk of water contamination because it will not migrate from the planned area of injection. On the other hand, independent geologists will tell you that it is not a matter of if the liquids will migrate, but how and when. The ability to confirm the geology of the underground area layer of injection “storage” is not exact, therefore accuracy in determining the probability for migration over time is poor.

Figure 2. Ohio Utica Brine Production and Class II Injection Well Disposal
View Map Fullscreen | How FracTracker maps work

We do know, however, that all underground systems in Ohio leak – Research by The Ohio State University and the US Geological Survey show that the age of the water in brine formations is far younger than the age of the rock deposits they are found in. See where wastewater is being created and disposed of in Ohio using the dynamic map above (Figure 2).

Spill Risks to Columbus, OH Water

According to area geologist, Dr. Julie Weatherington-Rice, the source for Columbus’s water to the north is mostly from surface water. This water comes from the Delaware and Morrow county watersheds that feed into sources such as the Hoover and Alum Creek reservoirs. The major threat from injection wells to our watershed is from spills, either from trucks or from storage at the injection well sites themselves.

Dead fish floating in Vienna area pond contaminated by injection well system spill Source: MetropolitanEnegineering Consulting & Forensics-Expert Engineers

Figure 3. Dead fish floating in Vienna area pond contaminated by injection well system spill. Source: MetropolitanEnegineering Consulting & Forensics-Expert Engineers

In April 2015, as much as 8,000 gallons of liquid leaked from a malfunctioning pipe in the storage apparatus of an oil/gas waste storage and injection well site in Vienna, OH. This caused a wildlife kill in two ponds (Figure 3), and the spill was not contained until 2/3 mile downstream in a tributary. The firm who owned the facility was found negligent in that they did not install a required containment liner for spills. The incident was discovered by neighboring residents, but apparently employees knew of the leak weeks before. Of note in this incident was that Ohio Department of Natural Resources, the regulatory agency that oversees all oil/gas production activity in Ohio including injection, stated that there was “minimal impact to wildlife.”

Brine tanker rollover near Barnesville, OH spilled 5,000 gal. of produced brine. Source: Barnesville, OH Fire Department

Figure 4. Brine tanker rollover near Barnesville, OH spilled 5,000 gal. of produced brine. Source: Barnesville, OH Fire Department

In March, 2016, a tanker truck carrying produced waste from a hydraulically fractured well pad overturned outside of the Village of Barnesville, Ohio (Figure 4). The truck spilled 5,000 gallons of liquid waste into a field that led into a tributary, leading the fluids to enter one of the city’s three drinking water supply reservoirs. The water source was shut down for more than two months while regulators determined if water levels were safe for consumption. There was a noted spike in radium-226 levels during water testing immediately after the spill.

Of greatest concern is that, although many millions of gallons of frack waste have been injected into the wells north of Columbus over the past few years, we expect that this activity will increase. For the first time, the United States began exporting its own natural gas in 2016, to regions such as Europe and South America. As the industry consolidates from the depression of oil prices over the past two years and begins to ramp up again, we expect the extraction activity in the Marcellus and especially Utica to increase to levels beyond what we have seen since 2011. The levels of injection will inevitably follow, so that injection wells in Ohio will receive much more than in the past. The probability of spills, underground migration, and human-induced earthquakes may increase steeply, as well.

An Aging Disposal Infrastructure

On our Columbus Community Bill of Rights website, we show pictures of some of the Class II injection wells in Morrow County, most of them converted from legacy production wells. These old wells are located in played out oil/gas fields that may still be producing or have abandoned but not plugged (closed) wells, allowing other routes for injected liquids to migrate into shallow ground water and to the surface. The dilapidated condition of these converted Class II wells makes it hard to believe that they are used to inject millions of gallons of wastewater under high pressure. While many of the wells in the state are as deep as 9,000 feet, all of the injection wells we have seen in Morrow County are only 3,000-4,000 feet deep. This situation puts surface water at greater risk over time, as it is probable that, over the generations, some of the fluids will migrate and wick into the higher subterranean strata.

Figure 5. Ohio Class II Injection Wells by Type
View Map Fullscreen | How FracTracker maps work

One well (Power Fishburn unit, photo below) showed signs of poor spill control when we took our October 2015 injection well tour. While we were there, a brine tanker arrived and began pumping their load into the well. The driver took pictures of our license plates while we were there watching him. A year later, there is a whole new structure at the well, including a new storage tower, and an extensively beefed-up spill control berm. Maybe we need to visit all of the facilities when they come by to use them!

Another well (Mosher unit, photo below) which hadn’t been used since 2014 according to available records, showed signs of a spill around the well. The spill control berms look as if they probably had flooded at some point. This well sits on the edge of a large crop field.


Figures 6a and 6b. Photos of Class II injection wells. Click on the images to expand them.

North of Columbus, the city of Delaware’s underground source water is at risk of becoming contaminated from underground migration of disposed wastewater over time, through wicking and seepage effects (as explained earlier in this article). They are also vulnerable to their reservoir being contaminated from surface spill migration through their watershed.

Google maps rendition of Ohio Soil Recycling facility in south Columbus, Ohio, that accepts shale drill cuttings for remediation to cap the landfill. Source: Google Maps/author

Figure 7. Google maps rendition of Ohio Soil Recycling facility in south Columbus, Ohio, that accepts shale drill cuttings for remediation to cap the landfill. Source: Google Maps/author

South of Columbus is another threat – drill cuttings from the drilling process have been authorized for disposal at a “remediation” landfill adjacent to the Alum Creek (Figure 7). The bioremediation treatment used is not indicated to solve the problem of removing radionuclides from the materials. This landfill had been remediated under the Ohio EPA twice when it was a toxic drum dump, after toxins were found to have been leaching into the watershed creek. Columbus’s Alum Creek well, as well as Circleville, are at risk of contamination in their drinking water if radionuclides from the cuttings leach into Alum Creek. Again, this is a long-term legacy of risk to their water.

Radiation Regulatory and Monitoring Gaps

Since The Ohio legislature deemed the radioactive content of shale cuttings to be similar to background levels in the 2013 state budget bill, cuttings can be spread around to all licensed landfills in Ohio with absolutely no accountability for the radium and other heavy metal levels in them. Unfortunately, the measuring protocol used in the pilot study for the Columbus facility to demonstrate to Ohio EPA that radium-226 was below EPA drinking water limits has been shown in a University of Iowa study to be unreliable.  The inadequate protocol was shown to indicate as little as 1% of the radium levels in shale waste samples tested.

As such, there have been hundreds of incidents where truckloads of cuttings have been turned away at landfills with crude radiation monitors. In 2013 alone, 2 loads were turned away in Ohio landfills, and over 220 were turned away from Pennsylvania landfills.

Ohio has a long way to go before it can be considered a clean energy state. The coal industry polluted significant water sources in the past. The fracking industry seems to be following suit, where contaminations will surprise us long into the future and in broader areas.


Map Data for Download

For schools and hospitals analysis, 2017

How close are schools and hospitals to drilling activity in West Virginia and Ohio?

A review of WV and OH drilling activity and its proximity to schools and medical facilities

Schools and hospitals represent places where vulnerable populations may be put at risk if they are located close to oil and gas activity. Piggybacking on some elegant work from PennEnvironment (2013) and Physicians, Scientists, and Engineers (PSE) Healthy Energy (PDF) in Pennsylvania, below is an in-depth look at the proximity of unconventional oil and gas (O&G) activity to schools and hospitals in Ohio and West Virginia.

Ohio Schools and Medical Facilities

In Ohio, presently there are 13 schools or medical facilities within a half-mile of a Utica and/or Class II injection well and an additional 344 within 2 miles (Table 1 and map below). This number increases to 1,221 schools or medical facilities when you consider those within four miles of O&G related activity.

Map of OH Drilling and Disposal Activity Near Schools, Medical Facilities

View map fullscreen | How FracTracker maps work
Explore the data used to make this map in the “Data Downloads” section at the end of this article.

Table 1. Number of OH schools and hospitals within certain distances from Utica wells

Utica Class II Injection
Well Distance (Miles) Schools Medical Facilities Schools Medical Facilities
0.5 3 1 9 0
0.5-1 19 (22) 9 (10) 16 (25) 13 (13)
1-2 79 (101)  41 (51) 88 (113) 79 (92)
2-3 84 (185) 49 (100) 165 (278) 122 (214)
3-4 85 (270) 79 (179) 168 (446) 112 (326)
4-5 92 (362) 63 (242) 196 (642) 166 (492)
5-10 388 (750) 338 (580) 796 (1,438) 584 (1,076)

Ohio’s rate of Utica lateral permitting has jumped from an average of 39 per month all-time to 66 per month in the last year. OH’s drilling activity has also begun to spread to outlying counties[1]. As such, we thought a proactive analysis should include a broader geographic area, which is why we quantified the number of schools and medical facilities within 5 and 10 miles of Utica and Class II activity (Figures 1 and 2). To this end we found that ≥50% of Ohio’s schools, both public and private, are within 10 miles of this industry. Similarly 50% of the state’s medical facilities are within 10 miles of Utica permits or Class II wells.

Footnote 1: Eleven counties in Ohio are currently home to >10 Utica permits, while 23 are home to at least 1 Utica permit.


Figures 1, 2a, 2b (above). Click to expand.

Grade Level Comparisons

With respect to grade level, the majority of the schools in question are elementary schools, with 40-50 elementary schools within 2-5 miles of Ohio Utica wells. This number spikes to 216 elementary schools within ten miles of Utica permits along with an additional 153 middle or high Schools (Figure 3). Naturally, public schools constitute most of the aforementioned schools; there are approximately 75 within five miles of Utica permits and 284 within ten miles of Utica activity (Figure 4).


Figures 3 and 4 (above). Click to expand.

Public Schools in Ohio

We also found that ~4% of Ohio’s public school students attend a school within 2 miles of the state’s Utica and/or Class II Injection wells (i.e., 76,955 students) (Table 2). An additional 315,362 students or 16% of the total public school student population, live within five miles of O&G activity.

Table 2. Number of students in OH’s public schools within certain distances from Utica and Class II Injection wells

Utica Class II Injection
Well Distance (Miles) # Schools # Students Avg # Schools # Students Avg
0.5 3 1,360 453 7 3,312 473
<1 21 7,910 377 19 7,984 420
<2 96 35,390 376 90 41,565 462
<3 169 67,713 401 215 104,752 487
<4 241 97,448 404 350 176,067 503
<5 317 137,911 435 505 254,406 504
<10 600 280,330 467 1,126 569,343 506

(Note: Ohio’s population currently stands at 11.59 million people; 2,007,667 total students).

The broadest extent of our study indicates that 42% of Ohio students attend school within ten miles of a Utica or Class II Injection well (Figure 5). As the Ohio Utica region expands from the original 11 county core to include upwards of 23-25 counties, we expect these 5-10 mile zones to be more indicative of the type of student-Utica Shale interaction we can expect to see in the near future.


Photos of drilling activity near schools, and Figure 5 (above). Click to expand.

Private Schools in Ohio

At the present time, less than one percent of Ohio’s private school students attend a school within 2 miles of Utica and/or Class II Injection wells (specifically, 208 students). An additional 11,873 students or 11% of the total student population live within five miles. When you broaden the extent, 26% of Ohio’s private primary and secondary school students attend school daily within ten miles of a Utica or Class II Injection well. Additionally, the average size of schools in the immediate vicinity of Utica production and waste activity ranges between 11 and 21 students, while those within 2-10 miles is 112-159 students. Explore Table 3 for more details.

Table 3. Number of students in Ohio’s private schools within certain distances from Utica and Class II Injection.

Utica Class II Injection
Distance from Well (Miles) # Schools # Students Avg # Schools # Students Avg
0.5 . . . 1 . .
<1 . . . 2 25 13
<2 2 22 11 9 186 21
<3 7 874 125 30 4,460 149
<4 12 1,912 159 45 6,303 140
<5 21 2,471 118 61 9,610 158
<10 60 6,727 112 135 20,836 154

West Virginia Schools and Students

Twenty-eight percent (81,979) of West Virginia’s primary and secondary school students travel to a school every day that is within two miles of the state’s Marcellus and/or Class II Injection wells.

Map of WV Marcellus Activity and Schools

View map fullscreen | How FracTracker maps work
Explore the data used to make this map in the “Data Downloads” section at the end of this article.

Compared with Ohio, 5,024 more WV students live near this industry (Table 4). An additional 97,114 students, or 34% of the West Virginia student population, live within 5 miles of O&G related wells. The broadest extent of our study indicates that more than 90% of West Virginia students attend school daily within 10 miles of a Marcellus and/or Class II Injection well.

figure6

Figure 6. West Virginia primary and secondary schools, Marcellus Shale wells, and Class II Injection wells (Note: Schools that have not reported enrollment figures to the WV Department of Education are highlighted in blue). Click image to expand.

It is worth noting that 248 private schools of 959 total schools do not report attendance to the West Virginia Department of Education, which means there are potentially an additional 69-77,000 students in private/parochial or vocational technology institutions unaccounted for in this analysis (Figure 6). Finally, we were not able to perform an analysis of West Virginia’s medical facility inventory relative to Marcellus activity because the West Virginia Department of Health and Human Resources admittedly did not have an analogous, or remotely complete, list of their facilities. The WV DHHR was only able to provide a list of Medicaid providers and the only list we were able to find was not verifiable and was limited to hospitals only.

Table 4. Number of students in WV schools within certain distances from Shale and Class II Injection wells

Marcellus Class II Injection
Distance from Well (Miles) # Sum Avg # Sum Avg
0.5 19 5,674 299 1 . .
<1 52 (71) 16,992 (22,666) 319 5 (6) 1,544 257
<2 169 (240) 52,737 (75,403) 314 16 (22) 5,032 (6,576) 299
<3 133 (373) 36,112 (111,515) 299 18 (40) 6,132 (12,708) 318
<4 88 (461) 25,037 (136,552) 296 21 (61) 5,235 (17,943) 294
<5 56 (517) 15,685 (152,237) 295 26 (87) 8,913 (26,856) 309
<10 118 (635) 37,131 (189,368) 298 228 (315) 69,339 (96,195) 305
Note: West Virginia population currently stands at 1.85 million people; 289,700 total students with 248 private schools of 959 total schools not reporting attendance, which means there are likely an additional 69-77,000 students in Private/Parochial or Vocational Technology institutions unaccounted for in this analysis.

Conclusion

A Trump White House will likely mean an expansion of unconventional oil and gas activity and concomitant changes in fracking waste production, transport, and disposal. As such, it seems likely that more complex and broad issues related to watershed security and/or resilience, as well as related environmental concerns, will be disproportionately forced on Central Appalachian communities throughout Ohio and West Virginia.

Will young and vulnerable populations be monitored, protected, and educated or will a Pruitt-lead EPA pursue more laissez-faire tactics with respect to environmental monitoring? Stay Tuned!

Analysis Methods

The radii we used to conduct this assessment ranged between ≤ 0.5 and 5-10 miles from a Utica or Marcellus lateral. This range is larger than the aforementioned studies. The point of using larger radii was to attempt to determine how many schools and students, as well as medical facilities, may find themselves in a more concentrated shale activity zone due to increased permitting. Another important, related issue is the fact that shale O&G exploration is proving to be more diffuse, with the industry exploring the fringes of the Utica and Marcellus shale plays. An additional difference between our analysis and that of PennEnvironment and PSE Healthy Energy is that we looked at identical radii around each state’s Class II Injection well inventory. We included these wells given the safety concerns regarding:

  1. their role in induced seismicity,
  2. potential water and air quality issues, and
  3. concomitant increases in truck volumes and speeds.

Data Downloads for Maps Above


By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Koontz Class II Injection Well, Trumbull County, Ohio, (41.22806065, -80.87669281) with 260,278 barrels (10,020,704 gallons) of fracking waste having been processed between Q3-2010 and Q3-2012 (Note: Q1-2016 volumes have yet to be reported!).

Ohio Shale Activity, Waste Disposal, and Public Water Supplies

Ohio is unique relative to its Appalachian neighbors in the Marcellus and Utica Shale Basins in that The Buckeye State chose to “diversify” when it came to planning for the hydraulic fracturing revolution. One of the first things financial advisers tell their clients is to “diversify, diversify, diversify.” However, this strategy is usually meant to buffer investors when certain sectors of the economy underperform. Columbus legislators took this strategy to mean that we should drill and hydraulically fracture our geology to extract oil and gas (O&G), as well as taking in vast quantities of liquid and solid O&G waste from Pennsylvania and West Virginia.

Accepting significant quantities of out-of-state waste raises several critical questions, however. How will these materials will be contained? Will such volumes require more and larger waste landfills? And will the injection of liquid brine waste into our geology (photo below) make Ohio the “Oklahoma of Appalachia” with respect to induced seismicity?


Above: Example Class II salt water disposal (SWD) wells in Ohio

Risks to Public Water Supplies

There are also mounting concerns about public water supply (PWS) security, quality, and resilience. These concerns stem from the growing uncertainty surrounding the containment of hydraulically fractured and Class II injection wells.

To begin to assess the risks involved in locating these wells near PWS’s, we compiled and incorporated as many of the state’s PWS’s into our primary Ohio maps. In this post, we explore PWS proximity to Utica drilling activity and Class II salt water disposal (SWD) wells in Ohio.

Waste Disposal & Drilling Near PWS’s

Public water chartJust how close are public water supplies to Class II waste disposal wells and permitted Utica wells? As of January 15, 2017, there are 13 PWS’s within a half-mile of Ohio’s Class II SWD wells, and 18 within a half-mile of permitted Utica wells. These facilities serve approximately 2,000 Ohioans each, with an average of 112-153 people per PWS (Tables 1 and 5). Within one mile from these wells there are 64 to 66 PWSs serving 18 to 61 thousand Ohioans. That’s an average of 285-925 residents.

Above: Photos of SWD wells from the sky

While PWSs on the 5-mile perimeter of our analysis don’t immediately conjure up water quality/quantity concerns, they may in the future; the rate of Utica and Class II permitting is likely to accelerate under a new White House administration more friendly to industry and averse to enforcing or enhancing regulatory hurdles.

A total of 960 and 699 PWSs are currently within five miles of Ohio Class II and Utica wells. These facilities service roughly 1.5 million and one-half million Ohioans each day, which is ~13% and 4% of the state, respectively. The average PWS within range of Class II wells is 37% to 330 times the average PWS within range of Utica wells.

Roland Marily Kemble Class II Salt Water Disposal Well, Muskingum County, Ohio, Muskingum River Watershed, 39.975, -81.845, 1,984,787 Barrels of Waste Disposed Between 2010 and Q3-2016

Roland Marily Kemble Class II Salt Water Disposal Well, Muskingum County, Ohio, Muskingum River Watershed, 39.975, -81.845, 1,984,787 Barrels of Waste Disposed Between 2010 and Q3-2016

Fifty-eight (58%) to 69% of the PWSs within range of Class II wells are what the Ohio EPA calls Transient Non-Community (TNC) (Table 2). TNC’s are defined by the OH EPA and OH Department of Agriculture as serving[1]:

…at least 25 different persons over 60 days per year. Examples include campgrounds, restaurants and gas stations. In addition, drinking water systems associated with agricultural migrant labor camps, as defined by the Ohio Department of Agriculture, are regulated even though they may not meet the minimum number of people or service connections.

Meanwhile 60-89% of PWS’s in the shadow of Ohio’s permitted Utica wells are of the TNC variety. Even larger percentages of these PWS’s are either Groundwater or Purchased Groundwater types. Most of the PWS’s within the range gradient we looked at are privately owned, with only handful owned by federal or state agencies (Table 6).

Above: Example Class II salt water disposal (SWD) wells in Ohio

Of the 24 hydrologic unit codes (HUCs)/watersheds that contain Class II SWD wells, the lion’s share of PWS’s within the shadow of injection wells are the Tuscarawas, Mahoning, and Walhonding (Table 3). Even the Cuyahoga River, which feeds directly in the Great Lakes, is home to up to 138 PWS’s within 5 miles of Class II SWD wells. Conversely, only 13 HUCs currently contain Ohio’s Utica wells. Like Class II-affected HUCs, we see that the Mahoning, Tuscarawas, and Cuyahoga PSW’s contain most of the PWSs of interest (Table 7).

Conclusion

Watershed security/resilience concerns are growing in Eastern Ohio. Residential and agricultural water demands are increasingly coming into conflict with the drilling industry’s growing freshwater demand. Additionally, as oil and gas drilling uses more water, we will see more brine produced (Figures 1 and 2).

This, in turn, will create more demand – on top of an already exponential trend (Figure 3) – for Ohio’s existing Class II wells from across Northern Appalachia, stretching from Southeast Ohio and West Virginia to North Central Pennsylvania.

An understanding of the links between watershed security, O&G freshwater demand, brine production, and frack waste disposal is even more critical in areas like Southeast Ohio’s Muskingum River Watershed (Figure 4).

A Dynamic Model of Water Demand Between 2000 and 2020 within the Muskingum River Watershed, Southeast Ohio, Kurtz, E. 2015

Figure 4. A Dynamic Model of Water Demand Between 2000 and 2020 within the Muskingum River Watershed, Southeast Ohio, Kurtz and Auch 2015

This is a region of the state where we have seen new water withdrawal agreements like the one below between the Muskingum River Watershed Conservancy District (MWCD) and Antero described in last week’s Caldwell Journal-Leader, Noble County, Ohio:

The [MWCD], which oversees 10 lakes in east central Ohio, approved a second short-term water sale from Seneca Lake last week. The deal, with Antero Resources, Inc., could net the district up to $9,000 a day over about a three month period, and allows Antero to draw up to 1.5 million gallons of water a day during the months of August, September and October for a total of 135 million gallons; less than one percent of the lake’s estimated volume of 14.2 billion gallons. Antero plans to use the water in its fracking operations in the area and will pay $6 per 1000 gallons drawn.

Consol Energy's Cowgill Road Impoundment, Sarahsville, Wills Creek, Noble County, Ohio, 39.8212, -81.4061

Consol Energy’s Cowgill Road Impoundment, Sarahsville, Wills Creek, Muskingum River Watershed, Noble County, Ohio, 39.8212, -81.4061

This agreement will mean an increase in new Class II SWD permits and/or discussion about converting Ohio’s thousands of other Class II wells into SWD wells. What does this change means for communities that have already seen the industry extract the equivalent of nearly 14% – and even 25-80% in several counties – of residential water from their watersheds, only to inject it 6,000+ feet into the state’s geology is unknown? (Figure 5)

It is critical that we establish and frequently revisit the spatial relationship between oil and gas infrastructure the water supplies of Appalachian Ohio. The state of national politics, federal agency oversight and administrations, growing concerns around climate change, and the fact that Southeast Ohio is experiencing more intense and infrequent precipitation events are testaments to that fact. We will be tracking these changes to Ohio’s landscape as they develop. Stay tuned.

Kleese Disposal Class II Salt Water Disposal Well, Trumbull County, Shenango/Mahoning River, 41.244, -80.641, 3,548,104 Barrels of Waste Disposed Between 2010 and Q3-2016

Kleese Disposal Class II Salt Water Disposal well from the sky, Trumbull County, Shenango/Mahoning River, 41.244, -80.641. Data suggest 3,548,104 barrels of waste have been disposed of there between 2010 and Q3-2016.


Supplemental Tables

Public Water and Class II Wells

Table 1. Number of Ohio public water supplies and population served at several intervals from Class II Injection wells

Well Distance (Miles) # Total Population Ave Served Per Well Max People Per Well
0.5 13 1,992 153 (±120) 446
<1 66 60,539 917 (±4,702) 37,456
<2 198 278,402 1,406 (±4,374) 37,456
<3 426 681,969 1,601(±8,187) 148,000
<4 681 1,086,463 1,596 (±8,284) 148,000
<5 960 1,450,865 1,511 (±7,529) 148,000

 

Table 2. Ohio public water supplies by system type, source, and ownership at several intervals from Class II Injection wells

 

Well Distance (Miles)

System Type† Source†† Ownership
 

NTNC

 

TNC

 

C

 

G

 

GP

 

S

 

SP

 

Private

 

Local

 

Fed

 

State

0.5 3 9 1 13 13
<1 11 47 8 65 1 61 5
<2 30 118 50 177 16 5 164 34
<3 76 245 105 385 32 8 351 75
<4 122 392 167 628 40 12 574 106 1
<5 162 564 234 878 30 32 19 823 135 1 1

† NTNC = Non-Transient Non-Community; TNC = Transient Non-Community; C = Community

†† G = Groundwater; GP = Purchased Groundwater; S = Surface Water; SP = Purchased Surface Water

 

Table 3. Ohio public water supplies by hydrologic unit code (HUC) at several intervals from Class II Injection wells

 

HUC Name

Well Distance (Miles)
0.5 <1 <2 <3 <4 <5
Ashtabula-Chagrin, 799 1 5 18 18 22
Black-Rocky, 859 1 1 2 2 9
Cuyahoga, 832 1 8 20 92 92 138
Grand, 811 12 30 71 71 81
Hocking, 1081 4 18 18 22
Licking, 1010 1 2 17 17 29
Little Muskingum-Middle Island, 1062 1 2 2 6
Lower Maumee, 856 2 2 4
Lower Scioto, 1091 6 6 9
Mahoning, 831 9 17 48 129 129 161
Mohican, 919 1 3 3 4
Muskingum, 1006 1 3 15 15 33
Raccoon-Symmes, 1128 1
Sandusky, 862 3 19 19 27
Shenango, 815 1 2 6 10 10 11
St. Mary’s, 934 3 5 5 7
Tiffin, 837 4 4 7
Tuscarawas, 889 1 9 76 147 147 213
Upper Ohio, 901 3 15 15 23
Upper Ohio-Shade, 1120 4 8 8 9
Upper Ohio-Wheeling, 984 1 1 4 4 5
Upper Scioto, 959 5 13 13 23
Walhonding, 906 1 11 26 69 69 101
Wills, 1009 2 3 12 12 14

 

Table 4. Ohio public water supplies by county at several intervals from Class II Injection wells

 

County

Well Distance (Miles)
0.5 <1 <2 <3 <4 <5
Ashtabula 4 9 16 19 22
Athens 1 2 2 3
Auglaize 3 5 5 7
Belmont 1 4 5 6
Carroll 2 9 20
Columbiana 1 2 6 13 20 32
Coshocton 7 8 10 13
Crawford 1
Cuyahoga 1
Delaware 1
Fairfield 4
Franklin 1 3 7
Fulton 2 4 8
Gallia 1
Geauga 8 19 33 60 71
Guernsey 2 4 10 11 11
Harrison 1 1
Henry 2 3 3
Henry 2 3
Hocking 3 10 11 13
Holmes 1 11 34 25 38 47
Jefferson 1 3 3 5
Knox 2 6 8 9
Lake 1 4 7 17 18
Licking 1 2 10 14 26
Lorain 1 4
Mahoning 3 4 13 25 37 48
Medina 1 1 1 2 5
Meigs 4 5 6 7
Morgan 1 1 1 6 17
Morrow 3 8 11 11
Muskingum 3 8 15
Noble 1 2 2 3
Perry 5 6 8
Pickaway 2 3 7 10
Portage 3 12 41 62 90 113
Seneca 1 12 17 21
Stark 1 4 20 52 121 161
Summit 2 12 26 51
Trumbull 3 7 24 32 45 61
Tuscarawas 6 10 22 24 26
Washington 1 2 4 9
Wayne 1 1 9 18 24 54
Wyandot 2 2 2 3

Public Water and Hydraulically Fractured Wells

Table 5. The number of Ohio public water supplies and population served at several intervals from hydraulically fractured Utica Wells

Well Distance (Miles) # Total Population Ave Served Per Well Max People Per Well
0.5 18 2,010 112 (±72) 31
<1 64 17,879 279 (±456) 2,598
<2 235 116,682 497 (±1,237) 8,728
<3 433 257,292 594 (±2,086) 29,787
<4 572 380,939 666 (±2,404) 29,787
<5 699 496,740 711 (±2,862) 47,348

 

Table 6. Ohio public water supplies by system type, source, and ownership at several intervals from hydraulically fractured Utica Wells

 

Well Distance (Miles)

System Type† Source†† Ownership
 

NTNC

 

TNC

 

C

 

G

 

GP

 

S

 

SP

 

Private

 

Local

 

Fed

 

State

0.5 1 16 1 17 1 18
<1 9 45 10 59 3 1 1 58 6
<2 50 137 48 216 6 3 10 206 29
<3 83 265 85 400 14 5 14 381 51 1
<4 109 352 111 534 16 7 15 504 67 1
<5 141 421 137 652 19 9 18 621 77 1

† NTNC = Non-Transient Non-Community; TNC = Transient Non-Community; C = Community

†† G = Groundwater; GP = Purchased Groundwater; S = Surface Water; SP = Purchased Surface Water

 

 

Table 7. Ohio public water supplies by hydrologic unit code (HUC) at several intervals from hydraulically fractured Utica wells

 

HUC Name

Well Distance (Miles)
0.5 <1 <2 <3 <4 <5
Black-Rocky, 859 1 4 4 4
Cuyahoga, 832 2 12 31 54 82
Grand, 811 1 15 18 23
Licking, 1010 2 2 3 3
Little Muskingum-Middle Island, 1062 2 5 10 11 11
Mahoning, 831 2 5 48 105 142 175
Muskingum, 1006 3 7 9 11
Shenango, 815 2 5 10 13 14
Tuscarawas, 889 8 28 87 140 178 220
Upper Ohio, 901 7 20 45 66 72 73
Upper Ohio-Wheeling, 984 1 13 23 27 28
Walhonding, 906 10 15 34 47
Wills, 1009 2 3 5 7 8

 

 

Table 8. Ohio public water supplies by county at several intervals from hydraulically fractured Utica wells

 

County

Well Distance (Miles)
0.5 <1 <2 <3 <4 <5
Ashtabula 1 1
Belmont 1 2 7 14 15 16
Carroll 6 20 36 43 43 43
Columbiana 4 15 45 72 80 81
Coshocton 7 10 10
Geauga 14 20 25
Guernsey 1 1 2 4 5
Harrison 2 6 16 16 16 16
Holmes 5 13 31 43
Jefferson 2 3 11 22 25 25
Knox 1 1 2 2
Licking 1 1 1 1
Mahoning 2 10 32 44 55
Medina 1 4 5 7
Monroe 2 4 6 6 6
Muskingum 1 1 1 2 3
Noble 2 2 2 2
Portage 2 8 25 49 84
Stark 2 5 40 85 110 122
Summit 6 10
Trumbull 3 23 36 53 65
Tuscarawas 1 2 15 22 28 43
Washington 3 10 12 13
Wayne 5 5 7 21

Footnote

  1. Community (C) = serve at least 15 service connections used by year-round residents or regularly serve at least 25 year-round residents. Examples include cities, mobile home parks and nursing homes; Non-Transient, Non-Community (NTNC) = serve at least 25 of the same persons over six months per year. Examples include schools, hospitals and factories.

By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

Wastewater Disposal Facility in Colorado

Groundwater Threats in Colorado

FracTracker has been increasingly looking at oil and gas drilling in Colorado, and we’re finding some interesting and concerning issues to highlight. Firstly, operators in Colorado are not required to report volumes of water use or freshwater sources. Additionally, this analysis looked at how wastewater in Colorado is injected, and found that the majority is injected into Class II disposal wells (85%) while recycling wastewater is not common. Open-air pits for evaporation and percolation of wastewater is still a common practice. Colorado has at least 340 zones granted aquifer exemptions from the Clean Water Act for injecting wastewater into groundwater. The analysis also found that Weld County produces the most oil and gas in the state, while Rio Blanco and Las Animas counties produce more wastewater. And finally, Rio Blanco injects the most wastewater of all Colorado counties. Learn more about groundwater threats in Colorado below:

Introduction

Working directly with communities in Weld County, Colorado the FracTracker Alliance has identified issues concerning oil and gas exploration and production in Colorado that are of particular concern to community stakeholder groups. The issues include air quality degradation, environmental justice concerns for communities most impacted by oil and gas extraction, and leasing of federal mineral estates. Analysis of data for Colorado’s Front Range has identified areas where setback regulations are not followed or are inadequate to provide sufficient protections for individuals and communities and our analysis of floodplains shows where oil and gas operations pose a significant risk to watersheds. In this article we focus on the specific threat to groundwater resources as a result of particular waste disposal methods, namely underground injection and land application in disposal pits and sumps. We also focus on the sources of the immense amount of water necessary for fracking and other extraction processes.

Groundwater Threats

Numerous threats to groundwater are associated with oil and gas drilling, including hydraulic fracturing. Research from other regions shows that the majority of groundwater contamination events actually occur from on-site spills and poor management and disposal of wastes. Disposal and storage sites and spill events can allow the liquid and solid wastes to leach and seep into groundwater sources. There have been many groundwater contamination events documented to have occurred in this manner. For example, in 2013, flooding in Colorado inundated a main center of the state’s drilling industry causing over 37,380 gallons of oil to be spilled from ruptured pipelines and damaged storage tanks that were located in flood-prone areas. There are serious concerns that the oil-laced floodwaters have permanently contaminated groundwater, soil, and rivers.

Waste Management

In Colorado, wastes are managed several ways. If the wastewater is not recycled and used again in other production processes such as hydraulic fracturing, drilling fluids disposal must follow one of three rules:

  1. Treated at commercial facilities and discharged to surface water,
  2. Injected in Class II injection wells, or
  3. Stored and applied to the land and disposal pits at centralized exploration and production waste management facilities.

Additionally the wastes can be dried and buried in additional drilling pits, with restrictions for crop land. For oily wastes, those containing crude oil, condensate or other “hydrocarbon-containing exploration and production waste,” there are additional land application restrictions that mostly require prior removal of free oil. These various sites and facilities are mapped below, along with aquifer exemptions and other map layers related to water quality.

Figure 1. Interactive map of groundwater threats in Colorado

View Map Fullscreen | How Our Maps Work

Injection Wells

In 2015, Colorado injected a total of 649,370,514 barrels of oil and gas wastewater back into the ground. That is 27,273,561,588 gallons, which would fill over 41,000 Olympic sized swimming pools. Injected into the ground in deep formations, this water is forever removed from the water cycle.

Allowable injection fluids include a variety of things you do not want to drink:

  • Produced Water
  • Drilling Fluids
  • Spent Well Treatment or Stimulation Fluids
  • Pigging (Pipeline Cleaning) Wastes
  • Rig Wash
  • Gas Plant Wastes such as:
    • Amine
    • Cooling Tower Blowdown
    • Tank Bottoms

This means that federal exemptions to Underground Injection Control (UIC) regulations for oil and gas exploration and production have nothing to do with environmental chemistry and risk, and only consider fluid source.

Why the concern?

Why are we concerned about these wastes? To quote the regulation, “it is possible for an exempt waste and a non-exempt hazardous waste to be chemically very similar” (RCRA). Since oil and gas development is considered part of the United State’s strategic energy policy, the entire industry is exempt from many federal regulations, such as the Safe Drinking Water Act (SDWA), which protects underground sources of drinking water (USDW).

The Colorado Oil and Gas Conservation Commission has primacy over the UIC permits and the Colorado Department of Public Health and Environment (CDPHE) administers the environmental protection laws related to air quality, waste discharge to surface water, and commercial disposal facilities. Under the UIC program, operators are legally allowed to inject wastewater containing heavy metals, hydrocarbons, radioactive elements, and other toxic and carcinogenic chemicals into groundwater aquifers.

The State of CO Injection Wells

According to the COGCC production reports for the year 2015, there are 9,591 active injection wells with volumes reported to the regulatory agency. Additionally, there are of course distinctions within the UIC rules for different types of injection wells, although the COGCC does not provide comprehensive data to distinguish between these types.

Injecting into the same geological formation or “zone” as producing wells is typically considered EOR, although some of the injected water will ultimately remain in the ground. Injecting into a producing formation is an immediate qualification for receiving an aquifer exemption.

EOR operations require considerably more energy and resources than conventional wells, and therefore have a higher water carbon footprint. If the wastewater is “recycled” as hydraulic fracturing fluid, the injections are exempt from all UIC regulations regardless. These are two options for the elimination of produced wastewater, although much of it will return to the surface in the future along with other formation waters. When the produced waters reach a certain level of salinity the fluid can no longer be used in enhanced recovery or stimulation, so final disposal of wastewater is typically necessary. These liquid wastes may then go to UIC Class II Disposal Wells.

Class II Injection Wells

The wells injecting into non-producing formations are therefore disposal wells, since they are not “enhancing production.” Of the almost 10,000 active injection wells in Colorado there are OVER 670 class II disposal well facilities; 402 facilities are listed as currently active. These facilities may or may not host multiple wells. By filtering the COGCC production and injection well database by target formation, we find that there are over 1,070 wells injecting into non-producing formations. These disposal wells injected at least 66,193,874 barrels (2,780,142,708 gallons) of wastewater in 2015 alone.

Where is the waste going?

A simple life-cycle assessment of wastewater in Colorado shows that the majority of produced water is injected back underground into class II disposal and EOR wells. The percentage of injected produced waters has been increasing since 2012, and in 2015 85% of the total volume of produced water in 2015 was injected.

If we assume that all the volume injected was produced wastewater, this still leaves 60 million barrels of produced water unaccounted for. Some of this volume may have been recycled and used for hydraulic fracturing, but this is rarely the case. Other options for disposal include commercial oilfield wastewater disposal facilities (COWDF) that use wastewater sumps (pits) for evaporation and percolation, as well as land application, to dilute the solid and liquid wastes by mixing them into soil.

Centralized Exploration and Production Waste Management Facilities

Photo by COGCC

Figure 2. Chevron Wastewater Land Application and Pit “Disposal” Facility. Photo by COGCC

According to the COGCC, there are 40 active and 71 total “centralized exploration and production waste management facilities” in Colorado. These facilities, mapped in Figure 1 above, are mostly open-air pits used for storage or disposal, or land-application sites.

As can be seen in the Figure 2 to the right, land application sites are little more than farms that don’t grow anything, where wastewater is mixed with soil. Groundwater monitoring wells around these sites measure the levels of some contaminants. Inspection reports show that sampling of the wastewater is not usually – if ever – conducted. The only regulatory requirement is that oil is not visibly noticeable as a sheen on the wastewater fluids in impoundments, such as the one in Figure 3 below, operated by Linn Operating Inc., which is covered in an oily sheen.

In most other hydrocarbon producing states, open-air pits or sumps are not allowed for a variety of reasons. At FracTracker, we have covered this issue in other states, as well. In New Mexico, for example, the regulatory agency outlawed the use of pits after finding cased where 369 pits were documented to have contaminated groundwater. California is another state that still uses above ground pits for disposal. At sites in California, plumes of contaminants are being monitored as they spread from the facilities into surrounding regions of groundwater. Additionally, these wastewater pit disposal sites present hazards for birds and wildlife. There have been a number of papers documenting bird deaths in pits, and the risk for migratory bird species is of high concern. Other states like California are struggling with the issue of closing these types of open-air pit facilities. Closing these facilities means that more wastewater will be injected in Class II disposal wells.

Linnoilypit

Figure 3. Linn energy oily wastewater disposal pit

Production and Injection Volumes

The data published by the COGCC for well production and injection volumes shows some unique trends. An analysis of injection and production well volumes shows Class II Injection is tightly connected to exploration and production activities. This finding is not surprising. Class II injection wells are considered a support operation for the production wells, and therefore should be expected to be similarly related. Wastewater injection wells are needed where oil and gas extraction is occurring, particularly during the exploration and drilling phases.

Looking at the graphs in Figures 4-6 below, it is obvious that injection volumes have been consistently tied to production of wastewater. It is also clear that the trend since 2012 shows that an increasingly larger percentage of wastewater is being injected each year. This trend follows the sharp increase in high volume hydraulic fracturing activity that occurred in 2012. During this boom in exploration and drilling activity, recycling of flowback for additional hydraulic fracturing activities most likely accounts for some of the discrepancy in accounting for the fact that 200% more wastewater was produced than was injected in 2012.

When Figure 4 (below) is compared to the graphs in Figures 5 and 6 (further below) it is also interesting to note that produced water volumes in 2015 are at a 5-year low as of 2015, while production volumes of both natural gas and oil are at a 5-year high. Wastewater volumes are linked to production volumes, but there are many other factors, including geological conditions and types of extraction technologies being used, that have a massive affect on wastewater volumes.

CO wastewater Volumes by year

Figure 4. Colorado wastewater volumes by year (barrels)

The graphs in Figures 5 and 6 below show different trends. Gas production in Colorado has remained relatively constant over the last five years with a sharp increase in 2015, while oil production volumes have been continually increasing, with the largest increase of 49% from 2014 to 2015, and 46% the year prior.

Figures 5-6

Colorado’s Front Range, specifically Weld County, is increasing oil production at a fast rate. New multi-well well-pads are being permitted in neighborhoods and urban and suburban communities without consideration for even elementary schools. Weld County currently has 2,169 new wells permitted within the county. The figure is higher than the next 9 counties combined. The other top three counties with the most well permits are 2. Garfield (1,130) and 3. Rio Blanco (189), for perspective. Additionally, 74% of pending permits for new wells are located in Weld County.

How Counties Compare

The top 10 counties for oil production are very similar to the top 10 counties for both produced and injected volumes, although there are some inconsistencies (Table 1). For example, Las Animas County produces the second largest amount of produced wastewater, but is not in the top 10 of oil producing counties. This is because the majority of wells in Las Animas County produce natural gas. Natural gas wells do not typically produce as much wastewater as oil wells. The counties and areas with the most oil and gas production are also the regions with the most injection and surface waste disposal, and therefore surface water and groundwater degradation.

Table 1. Top 10 CO counties for gas production, oil production, wastewater production, and injection volumes in 2015.

Gas Production Oil Production Wastewater Production Injection Volumes
Rank County Gas1 County Oil2 County Water2 County Water2
1 Weld 568,919,168 Weld 112,898,400 Rio Blanco 113,132,037 Rio Blanco 138,502,742
2 Garfield 556,855,359 Rio Blanco 4,412,578 Las Animas 45,868,907 Weld 50,360,796
3 La Plata 322,029,940 Gardield 1,744,900 Weld 37,665,571 Garfield 29,022,147
4 Las Animas 78,947,042 Araahoe 1,661,204 Garfield 34,704,673 La Plata 23,211,646
5 Rio Blanco 57,284,876 Lincoln 1,194,435 Washington 25,075,998 Washington 15,105,886
6 Mesa 32,200,936 Cheyenne 1,192,162 La Plata 23,352,861 Las Animas 13,706,555
7 Yuma 25,960,947 Adams 664,530 Cheyenne 9,326,944 Cheyenne 10,309,413
8 Archuleta 13,648,006 Moffat 419,893 Moffat 7,712,323 Logan 5,930,937
9 Moffat 13,610,219 Washington 413,603 Logan 5,606,828 Mesa 5,611,075
10 Gunnison 4,805,541 Jackson 407,537 Morgan 4,197,849 La Plata 4,992,391
1. Units are in MCF = Thousand cubic feet of natural gas;
2. Units are in Barrels

Aquifer Exemptions

Operators are given permission by the U.S. EPA to inject wastewater into groundwater aquifers in certain locations where groundwater formations are particularly degraded or when operators are granted aquifer exemptions. Aquifer exemptions are not regions where the groundwater is not suitable for use as drinking water. Quite the contrary, as any aquifer with groundwaters above a 10,000 ppm total dissolved solids (TDS) threshold are fast-tracked for injection permits. When the TDS is below 10,000 ppm operators can apply for an exemption from SDWA (safe drinking water act) for USDWs (underground sources of drinking water), which otherwise protects these groundwater sources. An exemption can be granted for any of the following three reasons. The formation is:

  • hydrocarbon producing,
  • too deep to economically access, or
  • too “contaminated” to economically treat.

Since the first requirement is enough to satisfy an exemption, most class II wells are located within oil and gas fields. Other considerations include approval of mineral owners’ permissions within ¼ mile of the well. On the map above, you can see the ¼ mile buffers around active injection wells. If you live in Colorado, and suspect you live within the ¼ mile buffer of an injection well, you can input an address into the search field in the top-right corner of the map to fly to that location.

Sources of Water

The economic driver for increasing wastewater recycling is mostly influenced by two factors. First, states with many class II disposal wells, like Colorado, have much lower costs for wastewater disposal than states like Pennsylvania, for example. Additionally, the cost of water in drought-stricken states makes re-use more economically advantageous.

These two factors are not weighted evenly, though. On the Colorado front range, water scarcity should make recycling and reuse of treated wastewater a common practice. The stress of sourcing fresh water has not yet become a finanacial restraint for exploration and production. Water scarcity is an issue, but not enough to motivate operators to recycle. According to an article by Small, Xochitl T (2015) “Geologic factors that impact cost, such as water quality and availability of disposal methods, have a greater impact on decisions to recycle wastewater from hydraulic fracturing than water scarcity.” As long as it is cheaper to permit new injection wells and contaminate potential USDW’s than to treat the wastewater, recycling practices will be largely ignored. Even in Colorado’s arid Front Range where the demand for freshwater frequently outpaces supply, recycling is still not common.

Fresh Water Use

The majority of water used for hydraulic fracturing is freshwater, and much of it is supplied from municipal water systems. There are several proposals for engineering projects in Colorado to redirect flows from rivers to the specific municipalities that are selling water to oil and gas operators. These projects will divert more water from the already stressed watersheds, and permanently remove it from the water cycle.

The Windy Gap Firming Project, for example, plans to dam the Upper Colorado River to divert almost 10 billion gallons to six Front Range cities including Loveland, Longmont, and Greeley. These three cities have sold water to operators for fracking operations. Greeley in particular began selling 1,500 acre-feet (500 million gallons) to operators in 2011 and that has only increased . The same thing is happening in Fort Lupton, Frederick, Firestone, and in other communities. Additionally, the Northern Integrated Supply Project proposes to drain an additional 40,000 acre feet/year (13 billion gallons) out of the Cache la Poudre River northwest of Fort Collins. The Seaman Reservoir Project by the City of Greeley on the North Fork of the Cache la Poudre River proposes to drain several thousand acre feet of water out of the North Fork and the main stem of the Cache la Poudre. And finally, the Flaming Gorge Pipeline would take up to 250,000 acre feet/year (81 billion gallons) out of the Green and Colorado Rivers systems, among others.

Other Water Sources

Unfortunately, not much more is known about sources and amounts of water for used for fracking or other oil and gas development operations. Such a data gap seems ridiculous considering the strain on freshwater sources in eastern Colorado and the Front Range, but regulators do not require operators to obtain permits or even report the sources of water they use. Legislative efforts to require such reporting were unsuccessful in 2012.

Now that development and fracking operations are continuously moving into urban and residential areas and neighborhoods, sourcing water will be as easy as going to the nearest fire hydrant. Allowing oil and gas operators to use municipal water sources raises concerns of conflicts of interest and governmental corruption considering public water systems are subsidized by local taxpayers, not well sites.

Conclusions

In Colorado, exploration and drilling for oil and natural gas continues to increase at a fast pace, while the increase in oil production is quite staggering. As this trend continues, the waste stream will continue to grow with production. This means more Class II injection wells and other treatment and disposal options will be necessary.

While other states are working to end the practices that have a track record of surface water and groundwater contamination, Colorado is issuing new permits. Colorado has issued 7 permits for CEPWMF’s in 2016 alone, some of them renewals. While there aren’t any eco-friendly methods of dealing with all the wastewater, the use of pits and land application presents high risk for shallow groundwater aquifers. In addition, sacrificing deep groundwater aquifers with aquifer exemptions is not a sustainable solution. These are important considerations beyond the obvious contribution of carbon dioxide and methane to the issue of climate change when considering the many reasons why hydrocarbon fuels need to be eliminated in favor of clean energy alternatives.


By Kyle Ferrar, Western Program Coordinator & Kirk Jalbert, Manager of Community Based Research & Engagement, FracTracker Alliance

Cover photo by COGCC

Photo courtesy of Brian van der Brug | LA Times

More Oil Field Wastewater Pits Found in California!

Who’s in charge here?
By Kyle Ferrar, Western Program Coordinator

FracTracker Alliance recently worked with Clean Water Action to map an update to last year’s report* on the use of unlined, above ground oil and gas waste disposal pits, also known as sumps.

The new report identifies additional oil field wastewater pits and details how California regulators continue to allow these facilities to degrade groundwater, surface waters, and air quality. Other oil and gas production states do not permit or allow these type of operations due to the many documented cases of water contamination. A report published in 2011 identified unlined pits and other surface spills as the largest threat to groundwater quality. The sites are ultimately sacrifice zones, where the contamination from produced water and drilling mud solid wastes leaves a lasting fingerprint.

Central Coast & New Central Valley Pit Data

Ca Central Coast oil field wastewater pits

Figure 1. Central Coast wastewater pits

New data has been released by the Central Coast Regional Water Quality Control Board, identifying the locations of 44 active wastewater facilities and 5 inactive facilities in the California counties of Monterey, Santa Barbara, and San Luis Obispo. The number of pits at each facility is not disclosed, but satellite imagery shows multiple pits at some facilities. The locations of the majority of central coast pits are shown in the map in Figure 1, to the right.

In the web map below (Figure 2), the most updated data shows the number of pits at “active” facilities (those currently operating), shown in red and green, and inactive pits, shown in yellow and orange. The number of pits at each facility in the central valley are shown by the size of the graduated circles. Pit count data for the central coast facilities was not reported, therefore all facilities are shown with a small marker.

Figure 2. Interactive map of California oil field wastewater pits

View Map Fullscreen | How Our Maps Work | Download Map Data (Zip File)

Exploring the new central coast data shows that the operators with the most facilities include Greka Oil & Gas Inc. (14), E & B Natural Resources (10), ERG Operating Company, LLC (6), and Chevron (5). As shown in the table below, the majority of central coast pits are located in Santa Barbara County.

Table 1. Summaries by County

Site Counts by Activity and County
Facility Counts Pit Counts
County Active Inactive Active Inactive
Santa Barbara 35 2 Unknown Unknown
Monterey 9 0 Unknown 0
San Luis Obispo 0 3 0 Unknown
Kern 161 191 673 347
Fresno 8 5 31 14
Tulare 6 1 28 1
Kings 5 0 14 0
San Benito 0 4 0 5
Grand Total 224 206 746 367

Wastewater Pit Regulations

Way back in 1988, the U.S. EPA recognized that the federal regulations governing disposal practices of wastewater are inadequate to protect public health, but has yet to take action (NRDC 2015). There is little chance the U.S. EPA will enact regulations focused on pits. In certain cases, if wastewaters spill or are discharged to surface waters the operations will fall under the jurisdiction of the Clean Water Act and will require a National Pollutant Discharge Elimination System (NPDES) permit. Since the objective of the pit is to contain the wastewater to keep it away from surface waters, pits and the wastewater facilities in California that manage them do not require federal oversight. For now the responsibility to protect health and environment has been left to the states.

Most states have responded and have strict regulations for wastewater management. For the few states that allow unlined pits, the main use is storage of wastewater rather than as an dedicated method of disposal. The majority of high production states have banned or ended the use of unlined pits, including Texas, North Dakota, Pennsylvania, Ohio, and New Mexico, Texas (Heberger & Donnelly 2015). An effective liner will prevent percolation of wastewaters into groundwater. The goal of California oil field wastewater pits is quite the opposite.

For California, percolation is the goal and a viable disposal option.

Therefore other regulations that require monitoring of liquid levels in the pits are moot. In fact there is no evidence of regulation requiring spill reporting in California whatsoever (Kuwayama et al. 2015).

Numerous other extraction states throughout the country have phased out the use of open pits entirely, including those with liners due to the common occurrence of liner failures. The list includes those new players in the shale boom using hydraulic fracturing techniques such as North Dakota, Ohio, Pennsylvania, Wyoming, and Colorado. Rather than using the pits as storage, these states’ regulatory agencies favor instead the protections of closed systems of liquid storage. Wastewaters are stored in large tanks, often the same tanks used to store the fresh water used in the hydraulic fracturing process.

Because hydraulic fracturing in California uses much less water, it should be much easier to manage the flowback fluids and other wastewaters. According to the CCST report, 60% of the produced water from hydraulic fracturing operations was disposed to these unlined pits. Regardless of extraction technique, oil extraction in California produces 15 times the amount of wastewater. In total, an estimated 40% of all produced water was discharged to unlined “percolation” pits. As the 3rd largest oil producing state in the country, this equates to a massive waste stream of about 130 billion gallons/year (Grinberg 2014).

Regulatory Action

The facilities’ permits identify waste discharge requirements (WDRs) that allow for the discharge of oil field wastewater to the “ground surface, into natural drainage channels, or into unlined surface impoundments.” Using the Race Track Hill and Fee 34 Facilities as an example, the WDRS place criteria limits on total dissolved solids (TDS), chlorides, and boron. If you disregard all the other toxic constituents not monitored, the allowable concentration limits set for these three wastewater constituents would be reasonable for a discharge permit on the east coast, where a receiving body of water could provide the volume necessary for dilution. When the wastewater is applied directly to the ground or into a pit, the evaporative loss of water results in elevated concentrations of these contaminants.

Even with these very lax regulations, a number of facilities are in violation of the few restrictions required in their permits. Cease and desist orders have been several operators, most notably to Valley Water Management’s Race Track Hill and Fee 34 Facilities. According to the Regional Water Board documents, the Fee 34 disregarded salinity limitations and other regulations. As a result the Regional Water Board found soil and groundwater contamination that “threatens or creates a condition of pollution in surface and groundwater, and may result in the degradation of water quality.” Reports show that 6 domestic supply and 12 agricultural supply wells are located within 1 mile of the Fee 34 facility. At the Race Track Hill Facility the wastewater is continuously sprayed over several acre fields in a small watershed of the Cottonwood Creek. During a rain, the salt and boron loadings that have accumulated in the soil over the past 60 years of spraying can create increased salt and boron loading in the Kern River and groundwater. This would be a violation of the Clean Water Act (CVRWQCB 2015).

As shown in Table 2, below, the majority of facilities are currently operating without a permit whatsoever (61.2%). Of the 72 facilities that bothered to get permits, 32 (44.4%) received the permit prior to 1975, before the Tulare Basin Plan was implemented to preserve water quality. Of the 183 active facilities in the Central Valley, only 15 facilities have received Cease and Desist (11% of permitted) or Cleanup and Abatement Orders (6% of unpermitted). Only 3 of the 41 active Central Coast facilities operate with a permit (7.3%).

These types of WDR permits that allow pollutants to concentrate in the soil and the groundwater and degrade air quality. Chemicals that pose a public health risk are not being monitored. But at this point, these facilities are not only sites of legacy contamination, but growing threats to groundwater security. Operators say that closing the pits will mean certain doom for oil extraction in California, and recent letters from operators make pleas to DOGGR, that their very livelihood depends on using the pits as dumping grounds. The pits are the cheapest and least regulated mode of disposal.

Table 2. Facility Status Summaries

Facility Status
Activity Permitted Permitted; Cease & Desist Order Unpermitted Unpermitted; Cleanup & Abatement Order Grand Total
Active 75 9 137 6 227
Inactive 20 2 184 3 209
Grand Total 92 11 321 9 433

New Mexico Case Study

Much like the groundwater impacts documented by California’s Central Valley Regional Water Quality Control Board, other states have been forced to deal with this issue. The difference is that other states have actually shut down the polluting facilities. In California, cease and desist orders have been met with criticism and pleas by operators, stating that the very livelihood of the oil and gas industry in California depends on wastewater disposal in pits. The same was said in other states such as New Mexico when these crude and antiquated practices were ended. Figure 3 below shows the locations of wastewater pits in New Mexico and the areas where groundwater was contaminated as a result of the pits.
The New Mexico oil and gas industry predicted in August 2008 that fewer drillers would sink wells in New Mexico, at least in part because of the new pit rule. Pro-industry (oil and gas) state representatives were concerned that new drilling techniques coupled with the pit rules could lead to an industry exodus from New Mexico, hoping that the Governor “would step in to help protect an important state revenue source.” But the state’s average rig count from June — when the pit rule took effect — through December 2008 was 7% higher than it was over the same period in the previous year. Development of oil and gas reserves is independent of such regulation. Read the FracTracker coverage of groundwater contamination in New Mexico, here!

Figure 3. Legacy map of cases where pits contaminated groundwater in New Mexico

View Map Fullscreen | How Our Maps Work

References & Resources

* In case you missed it, the 2014 report on wastewater pits can be found here (Grinberg, A. 2014). FracTracker’s previous coverage of the issue can be found here.

** Feature image of Central Valley oil field wastewater pits courtesy of Brian van der Brug | LA Times

  1. Grindberg, A. 2016. UPDATE ON OIL AND GAS WASTEWATER DISPOSAL IN CALIFORNIA: California Still Allowing Illegal Oil Industry Wastewater Dumping Clean Water Action. Accessed 2/15/16.
  2. Grinberg, A. 2014. In the Pits, Oil and Gas Wastewater Disposal into Open Unlined Pits and the Threat to California’s Water and Air. Clean Water Action. Accessed 12/5/14.
  3. NRDC. 2015. Groups File Notice of Intent to Sue EPA Over Dangerous Drilling and Fracking Waste. NRDC. Accessed 10/1/15.
  4. Heberger, M. Donnelly, K. 2015. Oil, Food, and Water: Challenges and Opportunities for California Agriculture. Pacific Institute. Accessed 2/1/16.
  5. Kuwayama et al. 2015. Pits versus Tanks: Risks and Mitigation Options for On-site Storage of Wastewater from Shale Gas and Tight Oil Development. Resources for the Future. Accessed 2/1/16.
  6. CVRWQCB. 2015. Cease and Desist Order R5-2015-0093. CVRWQCB. Accessed 2/1/16.
Oil wastewater pit

Wastewater Pits Still Allowed in California

By Kyle Ferrar, Western Program Coordinator

Above-ground, unlined, open-air sumps/ponds

It is hard to believe, but disposing of hazardous oil and gas wastewaters in unlined, open-air pits – also known as sumps or ponds – is still a common practice in California. It is also permitted in other states such as Texas and West Virginia. Because these ponds are unlined and not enclosed, they contribute to degraded air quality, are a hazard for terrestrial animals and birds, and threaten groundwater quality. A 2014 report by Clean Water Action, entitled In the Pits provides a thorough summary of the issue in California. Since the report was released, new data has been made available by the Central Valley Regional Water Quality Review Board identifying additional locations of wastewater pits.

With the increase of oil and gas development in unconventional reservoirs, such as the Monterey Shale Play in California, the size of the resultant waste stream of drill cuttings, produced brines, and wastewater has skyrocketed. Operators now drill larger, deeper wells, requiring larger volumes of liquid required for enhanced oil recovery methods, such as steam injection, and stimulations such as hydraulic fracturing and acidizing. While California is the 4th largest oil-producing state, it is 2nd only to Texas in wastewater production. This boom of unconventional development, which may still in its infancy in California, has resulted in an annual waste stream of over 130 billion gallons across the state, 80 billion (62%) from Kern County alone.1

Results of the state mandated California Council on Science and Technology Report found that more than half of the California oil industries waste water is “disposed” in pits.2 As outlined by Clean Water Action, the massive waste-stream resulting from drilling, stimulation, and production is one of the most significant and threatening aspects of oil and gas operations in terms of potential impacts to public health and environmental resources.

Wastewater Facility Details

Last February, the LA Times reported on the pits, identifying a total of 933 in California.3 The most recent data from the Regional Water Quality Control Board of the Central Valley shows:

  • A total of 1,088 pits at 381 different facilities
  • 719 pits are listed as “Active.” 369 are “Idle.”
  • 444/939 (47.3%) ponds do not list a permit.
  • 462 pits are operated by Valley Water Management Corporation.

In Table 1, below, the counts of Active and Idle facilities and pits are broken down further to show the numbers of sites that are operating with or without permits. The same has been done for the operator with the most pits in Table 2, because Valley Wastewater operates nearly 9 times as many pits as the second largest operator, E & B Natural Resources Management Corporation. These two operators, along with California Resources Elk Hills LLC, all operate the same number of facilities (28). The other top 20 operators in Kern County are listed in Table 3, below.

Table 1. Wastewater Pit and Facility Counts by Category
Counts Active Idle
Facilities 180 201
Unpermitted Facilities 102 179
Facility Permitted prior to 1985 37 11
Individual Pits 719 369
Unpermitted Individual Pits 187 257
Pit Permitted prior to 1985 252 63

 

Table 2. Valley Water Wastewater Pit and Facility Counts by Category
Counts Active Inactive
Facilities 21 7
Unpermitted Facilities 2 2
Facility Permitted prior to 1985 9 1
Individual Pits 356 78
Unpermitted Individual Pits 5 9
Pit Permitted prior to 1985 166 35

 

Table 3. Top 20 Operators by Facility Count, with Pond Counts.
Rank Operator Pond Count Facility Count
1 Valley Water Management Company 462 28
2 E & B Natural Resources Management Corporation 53 28
3 California Resources Elk Hills, LLC 31 28
4 Aera Energy LLC 67 25
5 California Resources Corporation 31 23
6 Chevron U.S.A. Inc. 40 14
7 Pyramid Oil Company 21 12
8 Macpherson Oil Company 14 9
9 Schafer, Jim & Peggy 8 8
10 Crimson Resource Management 20 6
11 Bellaire Oil Company 11 6
12 Howard Caywood 11 6
13 LINN Energy 10 6
14 Seneca Resources Corporation 9 6
15 Holmes Western Oil Corporation 6 6
16 Hathaway, LLC 22 5
17 Central Resources, Inc. 15 5
18 Griffin Resources, LLC 13 5
19 KB Oil & Gas 8 5
20 Petro Resources, Inc. 6 5

Maps of the Pit Locations and Details

 

The following maps use the Water Authority data to show the locations details of the wastewater pits. The first map shows the number of pits housed at each facility. Larger markers represent more pits. Zoom in closer using the [+] to see the activity status of the facilities. Click the link below the map to open a new webpage. View the names of the facility operators by turning on the layer in the “Layers” menu at the top of the page. The second and third maps show the activity and permit status of each facility. The fourth map allows you to view both activity status and permit status simultaneously by toggling the layers on and off (Open the map in its own webpage, then use the layers menu at the top of the screen to change views).

Map 1. Facility Pit Counts with the top 10 operators identified as well as facility status

Map 1. To view the legend and map full screen, click here.

Map 2. Facility Activity Status

Map 2. To view the legend and map full screen, click here.

Map 3. Facility Permit Status

Map 3. To view the legend and map full screen, click here.

Map 4. Facilityhttps://maps.fractracker.org/lembed/?appid=7385605f018e437691731c94bb589f0a” width=”800″ height=”500″>
Map 4. To view the legend and map full screen, click here.

References

  1. USGS. 2014. Oil, Gas, and Groundwater Quality in California – a discussion of issues relevant to monitoring the effects of well stimulation at regional scales.. California Water Science Center. Accessed 10/1/15.
  2. CCST. 2015. Well Stimulation in California. California Council on Science and Technology. Accessed 9/1/15.
  3. Cart, Julie. 2/26/15. Hundreds of illicit oil wastewater pits found in Kern County . Los Angeles Times. Accessed 9/1/15.

The Science Behind OK’s Man-made Earthquakes, Part 1

By Ariel Conn, Seismologist and Science Writer with the Virginia Tech Department of Geosciences

On April 21, the Oklahoma Geological Survey issued a statement claiming that the sharp rise in Oklahoma earthquakes — from only a couple per year to thousands — was most likely caused by wastewater disposal wells associated with major oil and gas plays. This is huge news after years of Oklahoma scientists hesitating to place blame on an industry that provides so many jobs.

Now, seismologists from around the country — including Oklahoma — are convinced that these earthquakes are the result of human activity, also known as induced or triggered seismicity. Yet many people, especially those in the oil industry, still refute such an argument. Just what is the science that has seismologists so convinced that the earthquakes are induced and not natural?

Hidden Faults

Over the last billion years (give or take a couple hundred million), colliding tectonic plates have created earthquake zones, just as we see today in California, Japan, Chile and Nepal. As geologic processes occurred, these zones shifted and moved and were covered up, and the faults that once triggered earthquakes achieved a state of equilibrium deep in the basement rocks of the earth’s crust. But the faults still exist. If the delicate balance that keeps these fault systems stable ever shifts, the ancient faults can still move, resulting in earthquakes. Because these inactive faults are so deep, and because they can theoretically exist just about anywhere, they’re incredibly difficult to map or predict – until an earthquake occurs.

Thanks to historic reports of earthquakes in the central and eastern United States, we know there are some regions, far away from tectonic plate boundaries, that occasionally experience large earthquakes. Missouri and South Carolina, for example, suffered significant and damaging earthquakes in the last 200 hundred years, yet these states lie nowhere near a plate boundary. We know that fault zones exist in these locations, but we have no way of knowing about dormant faults in regions of the country that haven’t experienced earthquakes in the last couple hundred years.

What is induced seismicity?

As early as the 1930s, seismologists began to suspect that extremely large volumes of water could impact seismic activity, even in those regions where earthquakes weren’t thought to occur. Scientists found that after certain reservoirs were built and filled with water, earthquake swarms often followed. This didn’t happen everywhere, and when it did, the earthquakes were rarely large enough to be damaging. These quakes were large enough to be felt, however, and they represented early instances of human activity triggering earthquakes.[1]

Research into induced seismicity really picked up in the 1960s. The most famous example of man-made earthquakes occurred as a result of injection well activity at the Rocky Mountain Arsenal. The arsenal began injecting wastewater into a disposal well 12,000 feet deep in March of 1962, and by April of that year, people were feeling earthquakes. Researchers at the arsenal tracked the injections and the earthquakes. They found that each time the arsenal injected large volumes of water (between 2 and 8 million gallons per month, or 47,000 to 190,000 barrels), earthquakes would start shaking the ground within a matter of weeks (Figure 1).

Rocky Mountain Arsenal fluid injection correlated to earthquake frequency

Figure 1. Rocky Mountain Arsenal fluid injection correlated to earthquake frequency

South Carolina experienced induced earthquakes after filling a reservoir

Figure 2. South Carolina experienced induced earthquakes after filling a reservoir

When the injections ended, the earthquakes also ceased, usually after a similar time delay, but some seismicity continued for a while. The well was active for many years, and the largest earthquake thought to be induced by the injection well actually occurred nearly a year and a half after injection officially ended. That earthquake registered as a magnitude 5.3. Scientists also noticed that over time, the earthquakes moved farther and farther away from the well.

Research at a reservoir in South Carolina produced similar results; large volumes of water triggered earthquake swarms that spread farther from the reservoir with time (Figure 2).

When people say we’ve known for decades that human activity can trigger earthquakes, this is the research they’re talking about.

Why now? Why Oklahoma?

Class II Injection Well. Photo by Lea Harper

Injection Well in Ohio. Photo by Ted Auch

Seismologists have known conclusively and for quite a while that wastewater injection wells can trigger earthquakes, yet people have also successfully injected wastewater into tens of thousands of wells across the country for decades without triggering any earthquakes. So why now? And why in Oklahoma?

The short answers are:

  • At no point in history have we injected this much water this deep into the ground, and
  • It’s not just happening in Oklahoma.

One further point to clarify: General consensus among seismologists is that most of these earthquakes are triggered by wastewater disposal wells and not by hydrofracking (or fracking) wells. That may be a point to be contested in a future article, but for now, the largest induced earthquakes we’ve seen have been associated with wastewater disposal wells and not fracking. This distinction is important when considering high-pressure versus high-volume wells. A clear connection between high-pressure wells and earthquakes has not been satisfactorily demonstrated in our research at the Virginia Tech Seismological Observatory (VTSO) (nor have we seen it demonstrated elsewhere, yet). High-volume wastewater disposal wells, on the other hand, have been connected to earthquakes.

At the VTSO, we looked at about 8,000 disposal wells in Oklahoma that we suspected might be connected to induced seismicity. Of those, over 7,200 had maximum allowed injection rates of less than 10,000 barrels per month, which means the volume is low enough that they’re unlikely to trigger earthquakes. Of the remaining 800 wells, only 300 had maximum allowed injection rates of over 40,000 barrels per month — and up to millions of barrels per year for some wells. These maximum rates are on par with the injection rates seen at the Rocky Mountain Arsenal, and our own plots indicate a correlation between high-volume injection wells and earthquakes (Figure 3-4).

Triangles represent wastewater injection wells scaled to reflect maximum volume rates. Wells with high volumes are located near earthquakes.

Figure 3. Triangles represent wastewater injection wells scaled to reflect maximum volume rates. Wells with high volumes are located near earthquakes.

Triangles represent wastewater injection wells scaled to reflect maximum pressure. Wells with high pressures are not necessarily near earthquakes.

Figure 4. Triangles represent wastewater injection wells scaled to reflect maximum pressure. Wells with high pressures are not necessarily near earthquakes.

This does not mean that all high-volume wells will trigger earthquakes, or that lower-volume wells are always safe, but rather, it’s an important connection that scientists and well operators should consider.

Starting in 2008 and 2009, with the big oil and gas plays in Oklahoma, a lot more fluid was injected into a lot more wells. As the amount of fluid injected in Oklahoma has increased, so too have the number of earthquakes. But Oklahoma is not the only state to experience this phenomenon. Induced earthquakes have been recorded in Arkansas, Colorado, Kansas, New Mexico, Ohio, West Virginia and Texas.

In the last four years, Arkansas, Kansas, Ohio and Texas have all had “man-made” earthquakes larger than magnitude 4, which is the magnitude at which damage begins to occur. Meanwhile, in that time period, Colorado experienced its second induced earthquake that registered larger than magnitude 5. Oklahoma may have the most induced and triggered earthquakes, but the problem is one of national concern.

Footnote

[1] Induced seismicity actually dates back to the late 1800s with mining, but the connection to high volumes of fluid was first recognized in the 1930s. However, the extent to which it was documented is unknown.

The Water-Energy Nexus in Ohio, Part II

OH Utica Production, Water Usage, and Waste Disposal by County
Part II of a Multi-part Series
By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

In this part of our ongoing “Water-Energy Nexus” series focusing on Water and Water Use, we are looking at how counties in Ohio differ between how much oil and gas are produced, as well as the amount of water used and waste produced. This analysis also highlights how the OH DNR’s initial Utica projections differ dramatically from the current state of affairs. In the first article in this series, we conducted an analysis of OH’s water-energy nexus showing that Utica wells are using an ave. of 5 million gallons/well. As lateral well lengths increase, so does water use. In this analysis we demonstrate that:

  1. Drillers have to use more water, at higher pressures, to extract the same unit of oil or gas that they did years ago,
  2. Where production is relatively high, water usage is lower,
  3. As fracking operations move to the perimeter of a marginally productive play – and smaller LLCs and MLPs become a larger component of the landscape – operators are finding minimal returns on $6-8 million in well pad development costs,
  4. Market forces and Muskingum Watershed Conservancy District (MWCD) policy has allowed industry to exploit OH’s freshwater resources at bargain basement prices relative to commonly agreed upon water pricing schemes.

At current prices1, the shale gas industry is allocating < 0.27% of total well pad costs to current – and growing – freshwater requirements. It stands to reason that this multi-part series could be a jumping off point for a more holistic discussion of how we price our “endless” freshwater resources here in OH.

In an effort to better understand the inter-county differences in water usage, waste production, and hydrocarbon productivity across OH’s 19 Utica Shale counties we compiled a data-set for 500+ Utica wells which was previously used to look at differenced in these metrics across the state’s primary industry players. The results from Table 1 below are discussed in detail in the subsequent sections.

Table 1. Hydrocarbon production totals and per day values with top three producers in bold

County

# Wells

Total

Per Day

Oil

Gas

Brine

Production

Days

Oil

Gas

Brine

Ashland

1

0

0

23,598

102

0

0

231

Belmont

32

55,017

39,564,446

450,134

4,667

20

8,578

125

Carroll

256

3,715,771

121,812,758

2,432,022

66,935

67

2,092

58

Columbiana

26

165,316

9,759,353

189,140

6,093

20

2,178

65

Coshocton

1

949

0

23,953

66

14

0

363

Guernsey

29

726,149

7,495,066

275,617

7,060

147

1,413

49

Harrison

74

2,200,863

31,256,851

1,082,239

17,335

136

1,840

118

Jefferson

14

8,396

9,102,302

79,428

2,819

2

2,447

147

Knox

1

0

0

9,078

44

0

0

206

Mahoning

3

2,562

0

4,124

287

9

0

14

Medina

1

0

0

20,217

75

0

0

270

Monroe

12

28,683

13,077,480

165,424

2,045

22

7,348

130

Muskingum

1

18,298

89,689

14,073

455

40

197

31

Noble

39

1,326,326

18,251,742

390,791

7,731

268

3,379

267

Portage

2

2,369

75,749

10,442

245

19

168

228

Stark

1

17,271

166,592

14,285

602

29

277

24

Trumbull

8

48,802

742,164

127,222

1,320

36

566

100

Tuscarawas

1

9,219

77,234

2,117

369

25

209

6

Washington

3

18,976

372,885

67,768

368

59

1,268

192

Production

Total

It will come as no surprise to the reader that OH’s Utica oil and gas production is being led by Carroll County, followed distantly by Harrison, Noble, Belmont, Guernsey and Columbiana counties. Carroll has produced 3.7 million barrels of oil to date, while the latter have combined to produce an additional 4.5 million barrels. Carroll wells have been in production for nearly 67,000 days2, while the aforementioned county wells have been producing for 42,886 days. The remaining counties are home to 49 wells that have been in production for nearly 8,800 days or 7% of total production days in Ohio.

Combined with the state’s remaining 49 producing wells spread across 13 counties, OH’s Utica Shale has produced 8.3 million barrels of oil as well as 251,844,311 Mcf3 of natural gas and 5.4 million barrels of brine. Oil and natural gas together have an estimated value of $2.99 billion ($213 million per quarter)4 assuming average oil and natural gas prices of $96 per barrel and $8.67 per Mcf during the current period of production (2011 to Q2-2014), respectively.

Potential Revenue at Different Severance Tax Rates:

  • Current production tax, 0.5-0.8%: $19 million ($1.4 Million Per Quarter (MPQ). At this rate it would take the oil and gas industry 35 years to generate the $4.6 billion in tax revenue they proposed would be generated by 2020.
  • Proposed, 1% gas and 4% oil: At Governor Kasich’s proposed tax rate, $2.99 billion translates into $54 million ($3.9 MPQ). It would still take 21 years to return the aforementioned $4.6 billion to the state’s coffers.
  • Proposed, 5-7%: Even at the proposed rate of 5-7% by Policy Matters OH and northeastern OH Democrats, the industry would only have generated $179 million ($12.8 MPQ) to date. It would take 11 years to generate the remaining $4.42 billion in tax revenue promised by OH Oil and Gas Association’s (OOGA) partners at IHS “Energy Oil & Gas Industry Solutions” (NYSE: IHS).5

The bottom-line is that a production tax of 11-25% or more ($24-53 MPQ) would be necessary to generate the kind of tax revenue proposed by the end of 2020. This type of O&G taxation regime is employed in the states of Alaska and Oklahoma.

From an outreach and monitoring perspective, effects on air and water quality are two of the biggest gaps in our understanding of shale gas from a socioeconomic, health, and environmental perspective. Pulling out a mere 1% from any of these tax regimes would generate what we’ll call an “Environmental Monitoring Fee.” Available monitoring funds would range between $194,261 and $1.8 million ($16 million at 55%). These monies would be used to purchase 2-21 mobile air quality devices and 10-97 stream quantity/quality gauges to be deployed throughout the state’s primary shale counties to fill in the aforementioned data gaps.

Per-Day Production

On a per-day oil production basis, Belmont and Columbiana (20 barrels per day (BPD)) are overshadowed by Washington (59 BPD) and Muskingum (40 BPD) counties’ four giant Utica wells. Carroll is able to maintain such a high level of production relative to the other 15 counties by shear volume of producing wells; Noble (268 BPD), Guernsey (147 BPD), and Harrison (136 BPD) counties exceed Carroll’s production on a per-day basis. The bottom of the league table includes three oil-free wells in Ashland, Knox, and Medina, as well as seventeen <10 BPD wells in Jefferson and Mahoning counties.

With respect to natural gas, Harrison (1,840 Mcf per day (MPD)) and Guernsey counties are replaced by Monroe (7,348 MPD) and Jefferson (2,447 MPD) counties’ 26 Utica wells. The range of production rates for natural gas is represented by the king of natural gas producers, Belmont County, producing 8,578 MPD on the high end and Mahoning and Coshocton counties in addition to the aforementioned oil dry counties on the low end. Four of the five oil- or gas-dry counties produce the least amount of brine each day (BrPD). Coshocton, Medina, and Noble county Utica wells are currently generating 267-363 barrels of BrPD, with an additional seven counties generating 100-200 BrPD. Only four counties – 1.2% of OH Utica wells – are home to unconventional wells that generate ≤ 30 BrPD.

Water Usage

Freshwater is needed for the hydraulic fracturing process during well stimulation. For counties where we had compiled a respectable sample size we found that Monroe and Noble counties are home to the Utica wells requiring the greatest amount of freshwater to obtain acceptable levels of productivity (Figure 1). Monroe and Noble wells are using 10.6 and 8.8 million gallons (MGs) of water per well. Coshocton is home to a well that required 10.8 MGs, while Muskingum and Washington counties are home to wells that have utilized 10.2 and 9.5 MGs, respectively. Belmont, Guernsey, and Harrison reflect the current average state of freshwater usage by the Utica Shale industry in OH, with average requirements of 6.4, 6.9, and 7.2 MGs per well. Wells in eight other counties have used an average of 3.8 (Mahoning) to 5.4 MGs (Tuscarawas). The counties of Ashland, Knox, and Medina are home to wells requiring the least amount of freshwater in the range of 2.2-2.9 MGs. Overall freshwater demand on a per well basis is increasing by 220,500-333,300 gallons per quarter in Ohio with percent recycled water actually declining by 00.54% from an already trivial average of 6-7% in 2011 (Figure 2).

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale.

Figure 1. Average water usage (gallons) per Utica well by county

Average water usage (gallons) on a per well basis by OH’s Utica Shale industry, shown quarterly between Q3-2010 and Q2-2014.

Figure 2. Average water usage (gallons) on per well basis by OH Utica Shale industry, shown quarterly between Q3-2010 & Q2-2014.

Belmont County’s 30+ Utica wells are the least efficient with respect to oil recovery relative to freshwater requirements, averaging 7,190 gallons of water per gallon of oil (Figure 3). A distant second is Jefferson County’s 14 wells, which have required on average 3,205 gallons of water per gallon of oil. Columbiana’s 26 Utica wells are in third place requiring 1,093 gallons of freshwater. Coshocton, Mahoning, Monroe, and Portage counties are home to wells requiring 146-473 gallons for each gallon of oil produced.

Belmont County’s 14 Utica wells are the least efficient with respect to natural gas recovery relative to freshwater requirements (Figure 4). They average 1,306 gallons of water per Mcf. A distant second is Carroll County’s 250+ wells, which have injected 520 gallons of water 7,000+ feet below the earth’s service to produce a single Mcf of natural gas. Muskingum’s Utica well and Noble County’s 39 wells are the only other wells requiring more than 100 gallons of freshwater per Mcf. The remaining nine counties’ wells require 15-92 gallons of water to produce an Mcf of natural gas.

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Water Usage Per Unit of Oil Produced (Gallons of Water Per Gallon of Oil).

Figure 3. Average water usage (gallons) per unit of oil (gallons) produced across 19 Ohio Utica counties

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Water Usage Per Unit of Gas Produced (Gallons of Water Per MCF of Gas)

Figure 4. Average water usage (gallons) per unit of gas produced (Mcf) across 19 Ohio Utica counties

Waste Production

The aforementioned Jefferson wells are the least efficient with respect to waste vs. product produced. Jefferson wells are generating 12,728 gallons of brine per gallon of oil (Figure 5).6 Wells from this county are followed distantly by the 32 Belmont and 26 Columbiana county wells, which are generating 5,830 and 3,976 gallons of brine per unit of oil.5 The remaining counties (for which we have data) are using 8-927 gallons of brine per unit of oil; six counties’ wells are generating <38 gallons of brine per gallon of oil.

Water and production (Mcf and barrels of oil per day) in OH’s Utica Shale – Average Brine Production Per Unit of Oil Produced (Gallons of Brine Per Gallon of Oil)

Figure 5. Average brine production (gallons) per gallon of oil produced per day across 19 Ohio Utica Counties

The average Utica well in OH is generating 820 gallons of fracking waste per unit of product produced. Across all OH Utica wells, an average of 0.078 gallons of brine is being generated for every gallon of freshwater used. This figure amounts to a current total of 233.9 MGs of brine waste produce statewide. Over the next five years this trend will result in the generation of one billion gallons (BGs) of brine waste and 12.8 BGs of freshwater required in OH. Put another way…

233.9 MGs is equivalent to the annual waste production of 5.2 million Ohioans – or 45% of the state’s current population. 

Due to the low costs incurred by industry when they choose to dispose of their fracking waste in OH, drillers will have only to incur $100 million over the next five years to pay for the injection of the above 1.0 BGs of brine. Ohioans, however, will pay at least $1.5 billion in the same time period to dispose of their municipal solid waste. The average fee to dispose of every ton of waste is $32, which means that the $100 million figure is at the very least $33.5 million – and as much as $250.6 million – less than we should expect industry should be paying to offset the costs.

Environmental Accounting

In summary, there are two ways to look at the potential “energy revolution” that is shale gas:

  1. Using the same traditional supply-side economics metrics we have used in the past (e.g., globalization, Efficient Market Hypothesis, Trickle Down Economics, Bubbles Don’t Exist) to socialize long-term externalities and privatize short-term windfall profits, or
  2. We can begin to incorporate into the national dialogue issues pertaining to watershed resilience, ecosystem services, and the more nuanced valuation of our ecosystems via Ecological Economics.

The latter will require a more real-time and granular understanding of water resource utilization and fracking waste production at the watershed and regional scale, especially as it relates to headline production and the often-trumpeted job generating numbers.

We hope to shed further light on this new “environmental accounting” as it relates to more thorough and responsible energy development policy at the state, federal, and global levels. The life cycle costs of shale gas drilling have all too often been ignored and can’t be if we are to generate the types of energy our country demands while also stewarding our ecosystems. As Mark Twain is reported to have said “Whiskey is for drinking; water is for fighting over.” In order to avoid such a battle over the water-energy nexus in the long run it is imperative that we price in the shale gas industry’s water-use footprint in the near term. As we have demonstrated so far with this series this issue is far from settled here in OH and as they say so goes Ohio so goes the nation!

A Moving Target

ODNR projection map of potential Utica productivity from Spring, 2012

Figure 6. ODNR projection map of potential Utica productivity from spring 2012

OH’s Department of Natural Resources (ODNR) originally claimed a big red – and nearly continuous – blob of Utica productivity existed. The projection originally stretched from Ashtabula and Trumbull counties south-southwest to Tuscarawas, Guernsey, and Coshocton along the Appalachian Plateau (See Figure 6).

However, our analysis demonstrates that (Figures 7 and 8):

  1. This is a rapidly moving target,
  2. The big red blob isn’t as big – or continuous – as once projected, and
  3. It might not even include many of the counties once thought to be the heart of the OH Utica shale play.

This last point is important because counties, families, investors, and outside interests were developing investment and/or savings strategies based on this map and a 30+ year timeframe – neither of which may be even remotely close according to our model.

An Ohio Utica Shale oil production model for Q1-2013 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 7a. An Ohio Utica Shale oil production model using Kriging6 for Q1-2013

An Ohio Utica Shale oil production model for Q2-2014 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 7b. An Ohio Utica Shale oil production model using Kriging for Q2-2014

An Ohio Utica Shale gas production model for Q1-2013 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 8a. An Ohio Utica Shale gas production model using Kriging for Q1-2013

An Ohio Utica Shale gas production model for Q2-2014 using an interpolative Geostatistical technique called Empirical Bayesian Kriging.

Figure 8b. An Ohio Utica Shale gas production model using Kriging for Q2-2014


Footnotes

  1. $4.25 per 1,000 gallons, which is the current going rate for freshwater at OH’s MWCD New Philadelphia headquarters, is 4.7-8.2 times less than residential water costs at the city level according to Global Water Intelligence.
  2. Carroll County wells have seen days in production jump from 36-62 days in 2011-2012 to 68-78 in 2014 across 256 producing wells as of Q2-2014.
  3. One Mcf is a unit of measurement for natural gas referring to 1,000 cubic feet, which is approximately enough gas to run an American household (e.g. heat, water heater, cooking) for four days.
  4. Assuming average oil and natural gas prices of $96 per barrel and $8.67 per Mcf during the current period of production (2011 to Q2-2014), respectively
  5. IHS’ share price has increased by $1.7 per month since publishing a report about the potential of US shale gas as a job creator and revenue generator
  6. On a per-API# basis or even regional basis we have not found drilling muds data. We do have it – and are in the process of making sense of it – at the Solid Waste District level.
  7. An interpolative Geostatistical technique formally called Empirical Bayesian Kriging.