Posts

Secret Chemicals Report Cover - Rig

New report finds widespread use of proprietary fracking chemicals in PA

Keystone Secrets: Records Show Widespread Use of Secret Fracking Chemicals is a Looming Risk for Delaware River Basin, Pennsylvania Communities

A report released today by the Partnership for Policy Integrity (PFPI) found that between 2013 and 2017, drilling companies injected at least one hydraulic fracturing (“fracking”) chemical with an identity kept hidden from the public into more than 2,500 unconventional natural gas wells drilled in Pennsylvania. The report, KeyStone Secrets, found companies injected secret fracking chemicals 13,632 times into 2,515 wells in total (explore map below).

Fracking in unconventional formations has significantly increased oil and gas extraction, making Pennsylvania the nation’s second-largest natural gas producer. The process has also sparked concerns about pollution and health effects, especially related to unidentified fracking chemicals. In response, Pennsylvania and 28 other states have enacted rules that require some public disclosure of these chemicals. However, most if not all of these rules have exceptions that allow companies to withhold chemical identities as trade secrets.

This report by Massachusetts-based Partnership for Policy Integrity (PFPI), with analysis of fracking chemical disclosure data by FracTracker Alliance, illustrates that drilling companies have used these exceptions extensively.

Records obtained by PFPI from the US Environmental Protection Agency (EPA) show that non-disclosure of fracking chemical identities may leave people unknowingly exposed to harmful substances. Between 2003 and 2014, the EPA identified health concerns for 109 of 126 new chemicals proposed for use in oil and gas drilling and fracking. The manufacturers submitted information about the chemicals for review under a program that requires EPA to screen and regulate new chemicals for health and environmental impacts before they are used commercially.

Despite concerns by EPA scientists about the chemicals’ health effects, EPA approved most of the 109 chemicals for use, and 62 were later used in or likely used in oil and gas wells.  Manufacturers took advantage of trade secret protections that are permitted by federal law to conceal 41 of the 62 chemicals’ identities.  It is possible that some of these chemicals declared secret at the federal level are some of the same chemicals being used under trade secret protection in Pennsylvania.Keystone Secrets map

Explore dynamic map full screen

Mapping of secret fracking chemical injection sites (above) show that use is heaviest in southwest Pennsylvania near Pittsburgh and in northeast Pennsylvania near the Delaware River Basin, tracking areas of intensive drilling.

The use of secret chemicals in Pennsylvania’s oil and gas wells is likely even higher than detailed in this report because of exemptions in Pennsylvania law, including:

  • No disclosure requirements for the chemicals used in drilling oil and gas wells – the portion of the oil and gas extraction process that precedes fracking;
  • No requirement that fracking chemicals for so-called “conventional” oil and gas wells be reported to an easily searchable electronic database; and
  • A reporting exemption for chemical manufacturers who are not required to disclose trade secret chemical identities even to emergency responders cleaning up a leak or spill.

In the coming months, the Delaware River Basin Commission is expected to consider a ban on fracking in the basin – fracking that would be most likely to occur in unconventional gas wells in Pennsylvania’s portion of the four-state area. There is currently a de facto moratorium on fracking in the basin that provides drinking water for New York City and Philadelphia – among other cities. The commission is also expected to consider whether to allow related activities inside the basin, including the treatment and discharge into waterways of fracking wastewater from outside the basin. Any fracking or discharges of wastewater would be likely to include some of the secret fracking chemicals discussed in this report.

People have a right to know the identities of chemicals used in oil and gas operations so that citizens, first responders, regulators, and scientists can determine the chemicals’ risks and act to protect health and the environment. Learn more about the proprietary fracking chemicals used in PA by reading the full report:


Report Author: Dusty Horwitt, Partnership for Policy Integrity

Partnership for Policy Integrity Logo

** Feature image of the Richmond Chevron Refinery courtesy of Paul Chinn | The Chronicle

Petrochemical Industry Presence in East Bay CA’s North Coast Refinery Corridor

Who Lives Near the Refineries?
By

Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community-Based Research & Engagement

Key Takeaways

  • Communities living along the North Coast of the East Bay region in California are the most impacted by the presence of the petrochemical industry in their communities.
  • Emissions from these facilities disproportionately degrade air quality in this corridor region putting residents at an elevated risk of cancer and other health impacts.
  • People of color are more likely to live near the refineries and are therefore disproportionately affected.

Refinery Corridor Introduction

The North Coast of California’s East Bay region hosts a variety of heavy industries, including petroleum refineries, multiple power plants and stations, chemical manufacturing plants, and hazardous waste treatment and disposal facilities. Nationwide, the majority of petroleum refineries are located in heavily industrialized areas or near crude oil sources. The north coast region is unique. Access to shipping channels and the location being central to the raw crude product from North Dakota and Canada to the North, and California’s central valley oil fields to the south has resulted in the development of a concentrated petrochemical infrastructure within the largely residential Bay Area. The region’s petrochemical development includes seven fossil fuel utility power stations that produce a total of 4,283 MW, five major oil refineries operated by Chevron, Phillips 66, Shell Martinez, Tesoro, and Valero, and 4 major chemical manufacturers operated by Shell, General Chemical, DOW, and Hasa Inc. This unequal presence has earned the region the title, “refinery corridor” as well as “sacrifice zone” as described by the Bay Area Refinery Corridor Coalition.

The hazardous emissions from refineries and other industrial sites are known to degrade local air quality. It is therefore important to identify and characterize the communities that are affected, as well as identify where sensitive populations are located. The communities living near these facilities are therefore at an elevated risk of exposure to a variety of chemical emissions. In this particular North Coast region, the high density of these industrial point sources of air pollution drives the risk of resultant health impacts. According to the U.S.EPA, people of color are twice as likely to live near refineries throughout the U.S. This analysis by FracTracker will consider the community demographics and other sensitive receptors near refineries along the north coast corridor.

In the map below (Figure 1) U.S. EPA risk data in CalEnviroscreen is mapped for the region of concern. The map shows the risk resulting specifically from industrial point sources. Risk along the North Coast is elevated significantly. Risk factors calculated for the region show that these communities are elevated above the average. The locations of industrial sites are also mapped, with specific focus on the boundaries or fencelines of petrochemical sites. Additional hazardous sites that represent the industrial footprint in the region have been added to the map including sites registered with Toxic Release Inventory (TRI) permits as well as Superfund and other Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites. The Toxmap TRI sites are facilities that require a permit to emit hazardous air pollutants. The superfund and other CERCLA sites are locations where a historical footprint of industry has resulted in contamination. The sites are typically abandoned or uncontrolled hazardous waste sites that are part of register for tax-funded clean-ups.

Figure 1. Interactive map of risk in the East Bay’s North Coast refinery corridor

View Map Fullscreen | How Our Maps Work

Oil refineries in particular are unique sources of air emissions. There are 150 large domestic refineries throughout the United States. They are shown in the map in Figure 2 below. The majority (90%) of the refined products from these refineries are fuels; motor vehicle gasoline accounts for 40%. The refinery sites have hundreds of stacks, or point sources, and they emit a wide variety of pollutants, as outlined by the U.S. EPA:

  • Criteria Air Pollutants (CAPs)
    • Sulfur Dioxide (SO2)
    • Nitrogen Oxides (NOx)
    • Carbon Monoxide (CO)
    • Particulate Matter (PM)
  • Volatile Organic Compounds (VOCs)
  • Hazardous Air Pollutants (HAPs)
    • Carcinogens, including benzene, naphthalene, 1,3-butadiene, PAH
    • Non-carcinogenic HAP, including HF and HCN
    • Persistent bioaccumulative HAP, including mercury and nickel
  • Greenhouse Gases (GHG)
  • Hydrogen Sulfide (H2S)

Figure 2. Map of North American Petroleum Refineries


View Map Fullscreen | How Our Maps Work

BAAQMD Emissions Index

Figure 3. BAAQMD emissions index visualization

Disparate health impacts are therefore a known burden for these Bay Area communities. The region includes the cities of Richmond, Pinole, Hercules, Rodeo, Crockett, Port Costa, Benicia, Martinez, Mt. View, Pacheco, Vine Hill, Clyde, Concord, Bay Point, Antioch, and Oakley. In addition to preserving the ecological system health of this intercostal region is also important for both the ecological biodiversity of the marsh as well as commercial and recreational purposes. These wetlands provide a buffer, able to absorb rising waters and abate flooding.

The Bay Area Air Quality Management District’s (BAAQMD) Cumulative Impacts report identified areas where air pollution’s health impacts are relatively high in the San Francisco Bay Area. The report is does not limit their analysis to the North Coast, but shows that these regions with the most impacts are also the most vulnerable due to income, education level, and race and ethnicity. The report shows that there is a clear correlation between socio-economic disadvantages and racial minorities and the impacted communities. Figure 3 shows the regions identified by the BAAQMD as having the highest pollution indices.

Analysis

This analysis by FracTracker focuses specifically on the north shore of the East Bay region. Like the BAAQMD report, National Air toxic Assessment (NATA) data to identify census tracts with elevated risk. Specifically, elevated cancer and non-cancer risk from point sources emitting hazardous air pollutants (HAPs) as regulated by the U.S. EPA were used. CalEnviroScreen 2.0 data layers were also incorporated, specifically the U.S. EPA’s Risk Screening Environmental Indicators (RSEI) data. RSEI uses toxic release inventory (TRI) data, emission locations and weather to model how chemicals spread in the air (in 810m-square grid units), and combines air concentrations with toxicity factors.

The census tracts that were identified as disproportionately impacted by air quality are shown in the map below (Figure 4). The demographics data for these census tracts are presented in the tables below. Demographics were taken from the U.S. census bureau’s 2010 Census Summary File 1 Demographic Profile (DP1). The census tracts shapefiles were downloaded from here.

Figure 4. Interactive Map of Petrochemical Sites and Neighboring Communities in the East Bays North Coast Industrial Corridor

View Map Fullscreen | How Our Maps Work

Buffers were created at 1,000 ft; 2,000 ft; and 3,000 ft buffers from petrochemical sites. These distances were developed as part of a hazard screening protocol by researchers at the California Air Resources Board (ARB) to assess environmental justice impacts. The distances are based on environmental justice literature, ARB land use guidelines, and state data on environmental disamenities (Sadd et al. 2011). A demographical profile was summarized for the population living within a distance of 3,000 feet, and for the census tracts identified as impacted by local point sources in this region. The analysis is summarized in Table 1 below. Additional data on the socioeconomic status of the census tracts is found in Table 2.

Based on the increased percentage of minorities and indicators of economic hardship shows that the region within the buffers and the impacted census tracts host a disproportionate percentage of vulnerable populations. Of particular note is 30% increase in Non-white individuals compared to the rest of the state. We see in Table 2 that this is disparity is specifically for Black or African American communities, with an over 150% increase compared to the total state population. The number of households reported to be in poverty in the last 12 months of 2014 and those households receiving economic support via EBT are also elevated in this region. Additional GIS analysis shows that 7 healthcare facilities, 7 residential elderly care facilities, 32 licensed daycares, and 17 schools where a total of 10,474 students attended class in 2014. Of those students, 54.5% were Hispanic and over 84% identified as “Non-white.”

Table 1. Demographic Summaries of Race. Data within the 3,000 ft buffer of petrochemical sites was aggregated at the census block level.

Total Population Non-White Non-White (%ile)  Hispanic or Latino  Hispanic or Latino (%ile)
Impacted Census Tracts 387,446 212,307 0.548 138,660 0.358
3,000 ft. Buffer 77,345 41,696 0.539 30,335 0.392
State Total 37,253,956 0.424 0.376

Table 2. Additional Status Indicators taken from the 2010 census at the census tract level

Indicators (Census Tract data) Impacted Count Impacted Percentile State Percentile
Children, Age under 5 27,854 0.072 0.068
Black or African American 60,624 0.156 0.062
Food Stamps (households) 0.1103 0.0874
Poverty (households) 0.1523 0.1453

Conclusion

The results of the refinery corridor analysis show that the communities living along the North Coast of the East Bay region are the most impacted by the presence of the petrochemical industry in their communities. Emissions from these facilities disproportionately degrade air quality in this corridor region putting residents at an elevated risk of cancer and other health impacts. The communities in this region are a mix of urban and single family homes with residential land zoning bordering directly on heavy industry zoning and land use. The concentration of industry in this regions places an unfair burden on these communities. While all of California benefits from the use of fossil fuels for transportation and hydrocarbon products such as plastics, the residents in this region bear the burden of elevated cancer and non-cancer health impacts.

Additionally, the community profile is such that residents have a slightly elevated sensitivity when compared to the rest of the state. The proportion of the population that is made up of more sensitive receptors is slightly increased. The region has suburban population densities and more children under the age of 5 than average. The number of people of color living in these communities is elevated compared to background (all of California). The largest disparity is for Black or African American residents. There are also a large number of schools located within 3,000 ft of at least one petrochemical site, where over half the students are Hispanic and the vast majority are students of color. Overall, people of color are disproportionately affected by the presence of the petrochemical industry in this region. Continued operation and any increases in production of the refineries in the East Bay disproportionately impact the disadvantaged and disenfranchised.

With this information, FracTracker will be elaborating on the work within these communities with additional analyses. Future work includes a more in depth look at emissions and drivers of risk on the region, mapping crude by rail terminals, and working with the community to investigate specific health endpoints. Check back soon.

References

  1. U.S.EPA. 2011. Addressing Air Emissions from the Petroleum REfinery Sector U.S. EPA. Accessed 3/15/16.
  2. Sadd et al. 2011. Playing It Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California. International Journal of Environmental Research and Public Health. 2011;8(5):1441-1459. doi:10.3390/ijerph8051441.

** Feature image of the Richmond Chevron Refinery courtesy of Paul Chinn | The Chronicle

Events

Nothing Found

Sorry, no posts matched your criteria