Posts

Ancient Seas, Modern Ownership Concerns

By Karen Edelstein, NY Program Coordinator, FracTracker Alliance

In the Finger Lakes Region of New York State, while the debate rages about underground storage of gas in abandoned salt solution mines near Seneca Lake, the story is quite different to the east at Cayuga Lake. Cayuga has a history of not just solution brine mining, but also extensive mining of solid rock salt. The map below shows the footprint of underground salt mining – room-and-pillar style 2300 feet below Cayuga Lake – by the multinational corporation, Cargill. Mineral rights beneath the lake are owned by New York State, but note that some of the mine also extends underneath privately owned land in the Town of Lansing.


Map of Lansing, NY Cargill Salt Mine. For a full-screen version of this map (including map legend), click here.

About this Map

The interactive map (above) shows the location and extent of the Cargill Salt mine in Lansing, NY. The boundaries of the mine were digitized from a map, Figure 2.3-2, entitled “Plan View of the Cayuga Mine Showing East and West Shoreline Benchmark Locations” from the Spectra Environmental Group, Latham, NY, circa 2004, and another planning document acquired. Here is one of the original maps, and a planning map showing expansion through 2003. An additional map from a Cargill mine expansion permit request, viewed at the DEC headquarters in Cortland, NY, shows additional requested development under residential areas in Lansing. This layer is shaded green.

Questions Abound

The dynamics around salt extraction, and other uses such as gas extraction, raise several questions.

Consider the stratigraphic column of rocks in New York State. The salt layer that is being mined by Cargill is the Salina Group, approximately 2300 feet below the surface. Salt is dug out mechanically, broken up by machinery and explosives to break up the solid layer. The Marcellus Shale (in Lansing) is above that salt layer–in the expanse of Middle Devonian Rocks, while the Utica Shale is below it–part of the Ordovician rock strata. In order to drill into the Marcellus Shale, one would not need to enter the salt layer, although the boundary of rock between the two strata might only be a few hundred feet thick. Reaching the Utica Shale would require piercing the salt layer. The Central New York region is crisscrossed by an abundance of vertical cracks and joints in the bedrock, some of which are thought to be hundreds to thousands of feet long, and may extend to “basement rock”, the ancient rock below the hundreds-of-millions year-old sedimentary layers such as the shale, sandstone, and salt.

Numerous plugged and abandoned salt wells from the days of solution mining–mid 1800s to mid 1900s– are located on and near Salt Point, the delta where Salmon Creek meets Cayuga Lake. As the map shows, the rock salt mining extent is near to, but not in contact with, these old brine wells. The underground shape of the solution wells is not entirely understood, and may be variable due to different rates of dissolution of halite during the extraction process. The rock salt is mined out as a solid, not a a saturated salt liquid that would have then gone through an evaporation process in a giant kiln. Were rock salt extraction to occur too close to the old solution wells and a wall breached, flooding in the current Cargill mine could result.

This would obviously not be good.

(Nor, for that matter, would have been the prospect of storing spent nuclear fuel in the abandoned brine wells, something that was being considered in the mid-1970s. In a 3-volume study of the geology of the Salina Basin (spanning a d-state area), the conclusion made by the Stone and Webster Engineering Corporation1,  consultant to the US Department of Energy, was that no salt mining sites in the Finger Lakes region were appropriate  for nuclear fuel storage without further study of the area’s extensive, but under-studied, faulting patterns.)

What are the implications of other sorts of mineral extraction, in this part of the Finger Lakes Region?

Yours or Mine?

The extent of Cargill’s mining under residential portions of the Town of Lansing provokes several questions. For example, if Cargill has long-term access to these subsurface mineral rights, property owners do not control the land beneath their homes. This is not altogether uncommon in areas of mineral – or oil and gas – extraction. Can that land be leased for gas drilling?

It was revealing to look more closely at records of expired oil and gas leases in the area. During this process, we discovered that within the area that is “claimed” by Cargill for subsurface mineral extraction, numerous surface owners had also leased the gas rights beneath their property (see blue starburst markers on the map)2, even if the property deeds explicitly, for example,  indicated that the property owner “will not cause any damage to the said salt or mining operations [of the party of the second part] by permitting or consenting to any other drilling 1000 feet below the the surface of said premises, for oil, gas, water or any other substance or mineral..” (Tompkins County Clerk, Liber 463, p.284-5).  Here are links to page 2 and 3 of the deed, and the very comprehensive leasing clause of one of these oil and gas leases that permits a wide variety of gas-extraction related activity–both on the surface, and below ground.

Four of the ten leases were on property held by the Town of Lansing itself, and one other was on property owned by a local elected official. While all of these leases expired in 2012, and were never, in fact, drilled (due to the de facto moratorium on HVHF gas extraction in New York), the mash-up of these datasets raises important questions about our permitting structure. The implications of two separate entities claiming overlapping subsurface rights spotlights many questions regarding the oversight and regulation of potentially conflicting uses. Of particular concern are the risks posed by migration of gas through joints and fissures in the bedrock that are further weakened by hydraulic fracturing – and the potential for methane explosions3 in salt mines, whether or not a well shaft penetrates the salt gallery.

For more details on operations at Cargill’s Lansing mine, see this article from The Lansing Star, September 2012: Lansing Down Under: A Look at the Cargill Salt Mine.

References

  1. Regional Geology of the Salina Basin, Report of the Geologic Project Manager
    Volumes 1 and 2, Phase I, August 1977-January 1978, and Volume 3 Update, October 1979. Prepared by Stone and Webster Engineering Corporation for the Office of Nuclear Waste Isolation, Battelle Memorial Institute, Project Management Division, US Department of Energy.
  2. Map of Gas Leases in Tompkins County
  3. Cargill Incorporated Belle Isle Salt Mine Explosion (1979)

Western States: Please Abandon the PLSS!

By Matt Kelso, Manager of Data and Technology

Increasingly, the FracTracker Alliance is asked about oil and gas extraction on a national scale. To that end, we are in the process of developing a national dataset of oil and gas wells. Since the data is curated at the state level, it is a challenge to get consistent data formatting from state to state. However, most states at least have the decency to release their location data in decimal degree (DD), that familiar format of latitude and longitude values where users of the data don’t need to calculate the location using three different columns of degrees, minutes, and seconds (DMS).

For example, a DMS point of 45°12’16.4″N, 95°55’12.5″W could be written more tidily in DD as 45.204556, -96.920139. Two numbers, one discrete place on the globe (a random point in rural South Dakota, as it turns out).

Here is how that same location is properly designated using the Public Land Survey System:  “NW 14 T120N R51W Fifth Principal”

Public Land Survey System.  Image from National Atlas

Fig. 1 Public Land Survey System. Source: National Atlas

In English, that is the northwest quarter of Section 14, Township 120 North, Range 51 West Fifth Principal. If we wanted to, the quarter section could itself be split into four quarters, and each of those units could be split again, resulting in, for example the SE quarter of the NE quarter of the NW quarter of section 14, Township 120 North, Range 51 West Fifth Principal (See Fig. 1).

To the uninitiated, the PLSS is a needlessly complex system of describing locations in the American West that was devised by Thomas Jefferson to grid out the wild American frontier.  As such, it is not altogether surprising that it became the legal definition of place in many western states.

What is surprising is that the system is still in use, at least to the exclusion of other systems.  Many states release oil and gas data with multiple geographic systems, including the PLSS, State Plane, UTM, and decimal degrees.  This is an acceptable approach, as it caters to cartographers using technology ranging from the eighteenth through twenty-first centuries.

Accuracy Issues

My issue with the PLSS isn’t just that it is annoying. PLSS data are readily available, after all. Differing formats of the various data attributes can be worked out. However, there is inherently an accuracy issue with a system that uses a predefined area to define a point location. If you wanted to use it to describe an area such as a well pad, it is entirely possible that a typical drilling site might straddle four different sections, let alone quarter-quarter-quarter (QQQ) sections. For that matter, well pads could easily span multiple township and range designations, as well.

PLSS sections in New Mexico

Fig. 2 PLSS sections in New Mexico

Statewide shapefiles that are as detailed as sections are quite large, and are the most detailed data that most data sources offer. This means that the best we can usually do with well data published in PLSS is draw the well at the centroid, or geographical center-point of the section, which in theory is one square mile. Given that the hypotenuse of a square mile block is 1.44 miles, the distance from the centroid to any of the corners is 0.72 miles, or about 3,800 feet, which is the potential error for mapping using PLSS section centroids. While that lack of accuracy is unsatisfying for the FracTracker Alliance, the whole system is a potential nightmare for first responders, in an industry where serious things can go wrong.

In some states, the entire land areas were never even gridded out. New Mexico, for example, has Native American reservations and extensive lands grants that were issued when the region was under Spanish and Mexican control (Fig. 2).

On top of all of that, those square mile sections are not always square. These sections are based on field surveys that were mostly conducted in the 19th century. Walking straight lines in rough terrain isn’t actually all that easy, and in many cases, areas with ferrous deposits in the soil can interfere with the functionality of a magnetic compass.  If we take a closer look at the New Mexico sections map (Fig. 3 below), we can see that error is significant.

Moving Forward

Areas in green show PLSS Sections in North-Central New Mexico.  Areas in white were not gridded out as a part of the survey.

Fig. 3 Areas in green show PLSS Sections in North-Central New Mexico. Areas in white were not gridded out as a part of the survey.

Luckily, we live in an age where technology makes Thomas Jefferson’s valiant attempt at a coordinate system obsolete.  Decimal degree is a format that is well understood by GPS devices, Google Maps, sophisticated GIS software, and for the most part, the general public.  For mapping purposes, decimal degree is so easy to use and so widely established that other systems, especially the PLSS, come across as needlessly opaque.

This situation is not even analogous with the United States’ famous reluctance to embrace the metric system.  It takes some adjustment for people to start thinking in terms of kilograms and meters instead of pounds and feet. PLSS isn’t remotely intuitive as a coordinate system, even among those who use it all the time.  It’s time to abandon this as a way of conveying location.  I’d like to think that Thomas Jefferson, as a forward-thinking individual, would agree.

 

Portage County, OH Mountaineer Keystone Proposal

Ohio has seen its share of unconventional natural gas extraction in recent years. Now, the state is facing an influx of pipeline infrastructure to manage and distribute the extracted gas. In Portage County, OH, Mountaineer Keystone is of particular interest. FracTracker Alliance and Concerned Citizens Ohio have worked together to better understand the nature and extent of this activity.

Proposal Details

By Gwen Fischer and Trish Harness, Concerned Citizens Ohio, Portage County; Map by Ted Auch

Mt. Keystone will not invest in pipeline easements unless they believe their Return On Investment (ROI) will be great, so we expect them to drill intensively in the areas with many parcels leased and to link those parcels with pipelines wherever they have easements. They may also be seeking new pipeline easements.

Leases and easements are legal documents, and the details (how deep, placement, etc.) are critical to understanding what the industry is allowed to do on the land. Drilling companies don’t always go door to door to get a new lease. Door-to-door “landsmen” need only approach previously unleased properties. If the old lease was open-ended, a drilling company may be able to obtain a permit to drill a deeper well without negotiating new terms. If the lease was restrictive, the drilling company may need to negotiate to put a deep shale well pad or other “surface disturbance” changes not specified earlier. Without examining each lease individually, the map below cannot tell us what exactly is permitted, or where on the property. In addition, landowners should know that (depending on the terms of the lease) leases can be purchased without the owner’s knowledge. Thus, the owner may think they know the drilling company or the oil/gas production company they are dealing with, when in fact the ownership of the drilling or production well has changed.

Another item that the public should be aware of is that obtaining leases for mineral rights does not automatically grant rights for pipeline easements, but the leases could be written so as to allow for both drilling and pipelines.

The easements with Mt. Keystone are for water and waste flowback – but (given some pipeline easements we’ve seen with other companies) it is possible the pipelines could (will) be “re-purposed” for production from shale wells on the leased lands, once the wells are drilled. Even more open-ended options are possible.

About the Map

This map shows land parcels with publicly recorded mineral rights leases (for drilling) and Right of Way (ROW) easements for pipelines registered under Mountaineer Keystone’s name. No other company that might hold easements or leases is included. The map was created using public records, available on the Portage County Recorder’s and the Portage County Auditor’s websites. We utilized the raw and updated Portage County parcel shapefile and identified parcels using dummy variables with -1 identifying Mt. Keystone’s leases (825 parcels, 6,455 total acres, average 8 acres), 1 representing Mt. Keystone Right of Ways (ROWs) for pipelines (132 parcels, 2,837 total acres, average 22 acres), and 0 representing neither. Additionally, 14 of these parcels fall under those that have leases and ROWs (353 acres, average 25 acres)**.

Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Well information comes from ODNR (Ohio Department of Natural Resources) data on their website . All of Portage county was checked for leases or easements, and this represents all of the townships and about half of the actual leases.
New mineral rights leases are parcels where a high volume, horizontal shale (HVHS) production well may be drilled, or the horizontal “laterals”may be drilled under the land. The three existing HVHS wells and their laterals are shown. ROW easements are for pipelines. A few parcels have both easements and leased mineral rights. Since permits for future wells have not yet been applied for, we cannot know exactly where on any parcel a well pad or the laterals will be drilled. Properties with leases for wells already drilled are included. Without examining individual easements, we cannot know exactly where on a parcel pipelines will be laid.

** Recently we added 103 parcels from Geauga County parcels that Mountaineer Keystone purchased from Excalibur Oil within the proposed ROW. These parcels total 1,843 acres with a range of 0.45 to 117 acres and a mean of 18 acres to date.

Oil Drilling’s Impact on ND Communities

By Thomas DiPaolo, 2013 GIS Intern, FracTracker Alliance

ND Shale Viewer

ND Shale Viewer

Out of North Dakota’s 53 counties, 19 are responsible for producing the oil and natural gas that has brought the state so much prosperity and attention. It’s the latest get-rich-quick scheme, and one that works better than that name would suggest: drive to North Dakota, work in the oil fields for six months, and go home with enough money to find something more permanent. This means that some of the quiet towns overlying the Bakken formation are exploding in size, and many of their new residents lack any connection to these communities when they’re off duty. In the past, similar population booms have been tied to a corresponding increase in crime rates and drug usage, and FracTracker Alliance has examined the available data to find out how much life has changed in North Dakota since the oil started to flow.

Housing Availability

There’s a reason why the you have to drive to North Dakota if you want to stay in the black, and it helps if you’ve got a comfortable car.

Perhaps the biggest problem here, perhaps a cause of others, is that there is simply not enough housing for everyone who wants to work in North Dakota. Trailer parks pack every available inch of space for families from out of state prepared to settle in, becoming themselves towns in miniature, and one of the benefits to consider when working for one oil drilling company over another is to find out which ones are constructing dedicated worker housing and amenities. Familiarity doesn’t fail to breed contempt; demand for living space is so high, in fact, that families who have lived in these towns their whole lives are being forced out as rent prices rise without end. Meanwhile, many have taken to simply sleeping in their cars, and tensions have grown as stores forbid them from parking overnight in their lots.

Crime

With the number of people moving into the state to work in the oil fields, or in industries that support them, North Dakota’s population reached 699,628 in 2012, a jump from the 642,200 people of 2000. More people, of course, means greater effort required to keep the peace – The number of law enforcement officers accordingly jumped from 967 in 2000 to 1,253 in 2012. At first glance, one might think that did the job, since the crime rate fell from 2,203 index crimes1 reported per 100,000 people to 2,122 per 100,000 people, and the number of arrests per officer stayed constant (3.1 in 2000, 3.0 in 2012). That conclusion doesn’t hold up well when you look at how crime has fluctuated within the oil-producing counties.2 The population there has risen to 183,940 people, from just 167,515 people in 2000, and it currently employs 379 law enforcement officers, up from 250 officers. In 2000 the crime rate was already in excess of the state average at 1,582 index crimes reported per 100,000 people and 8.3 arrests per law enforcement officer. By 2012, those figures reached 1,629 crimes per 100,000 people and 12.8 arrests per officer. With only a quarter of the state’s population, the crime rate is three-quarters of the state average. This upswell applies especially to violent crimes. Violent crime reports, numbered at 558 statewide in 2000, nearly tripled to 1,445 in 2012; in the oil counties, they more than tripled from 103 to 363 crimes reported. That number carries through in the crime rate figures; statewide, 206.5 violent crimes occurred per 100,000 people in 2012, while only 86.9 crimes were reported per 100,000 people in 2000; in the oil counties, 197.3 violent crimes were reported per 100,000 people in 2012, compared to only 61.5 violent crimes per 100,000 people in 2000. See Table 1 for a comparison of total and violent crimes between the year 2000 and the year 2012.

Table 1. Crime rates per 100,000 people in North Dakota (2000 vs. 2012)

Total Index Crimes Violent Crimes
Statewide Oil Counties Statewide Oil Counties
2000 2,203 1,582 86.9 61.5
2012 2,122 1,629 206.5 197.3

Where the line blurs is in addressing property crime. Until 2009, there had been a steady decline in the rate of property crime. Since then, however, it has been increasing every year, even if the 2012 figures are still beneath those of 2000. Statewide, the number of property crimes hovered at 13,592 reported crimes in 2000 and 13,402 in 2012, while in the oil counties they rose slightly from 2,547 property crimes in 2000 to 2,634 crimes in 2012. At the same time, the property crime rates fell both statewide (2,116 crimes per 100,000 people to 1,916 per 100,000 people) and in the oil counties (1,529 crimes per 100,000 people to 1,486 per 1000,000 people).

Prostitution

When you have that many single young men together, as so many of the oil field workers are, a market inevitably springs up for very particular crimes. Prostitution stings consume a greater quantity of police time than ever before, with some ND counties reporting their first prostitution arrests ever. In many cases, the suspects in these cases demonstrate a similar attitude to the oil workers they court: stay for a brief period (typically days rather than months), make enough money to support themselves, and keep going out of town. Officers often say that these cases are risky, as they require enough evidence to prove the intent of both parties to exchange money for sex. Without an undercover officer to carry out a sting, many cases could be accused of discrimination, especially in cases where race may be an issue. In other situations, sting operations have provided evidence of drug activity in addition to prostitution.

Drug Use

Juvenile Alcohol Use

In addition to the oil boom, North Dakota has the uncomfortable claim of being one of the nation’s leaders when it comes to binge drinking. It’s notable then to see that, while juvenile3 alcohol use has fallen drastically across the board, juveniles are developing more permissive attitudes towards alcohol use. Between 2000 and 2011, the number of juveniles who reported using alcohol within the previous month fell from 18,000 to 7,000, and it fell from 11,000 to 4,000 juveniles in regards to binge drinking4 on a weekly basis. At the same time, the number of juveniles showing signs of alcohol dependence or abuse fell from 6,000 to 2,000, and those described as needing but not receiving treatment for alcohol abuse fell from 5,000 to 2,000. Yet only 17,000 juveniles reported perceiving great risk from said binge drinking in 2011, where 22,000 had reported perceiving great risk in 2000. Why are more juveniles rejecting personal alcohol use while becoming less concerned with others’ usage?

Adult Drug & Alcohol Use

Whatever the reason, adult alcohol usage has demonstrated the opposite trend: more people are drinking but fewer enjoy it. Between 2000 and 2011, the number of adults using alcohol monthly rose from 286,000 to 320,000, and those binge drinking weekly rose from 144,000 to 165,000. The number of adults perceiving great risk from weekly binge drinking also rose from 173,000 to 183,000, but the number with signs of alcohol dependence or abuse rose from 33,000 to 47,000. Interestingly, the number of adults described as needing but not receiving treatment for alcohol use has barely changed in this time; 46,000 adults were characterized this way in 2000, as opposed to 45,000 of them in 2011.

Smoking and Marijuana Use

The one trend shared between both juveniles and adults is a steady increase in the number of people expressing permissive attitudes towards the use of marijuana. In 2000, 4,000 juveniles and 13,000 adults reported using marijuana within the previous month; by 2011, only 2,000 juveniles reported using marijuana within the previous month, but the number of adults doing so had jumped to 23,000. At that time, only 17,000 juveniles and 171,000 adults reported perceiving great risk from the use of marijuana on a monthly basis, down from 25,000 and 213,000 respectively in 2000. These figures come at a time when other forms of smoking are becoming less popular across the U.S. In 2000 in ND, 16,000 juveniles were using tobacco products on a monthly basis, and 13,000 were using cigarettes specifically; those numbers had fallen to 6,000 and 5,000 juveniles respectively by 2000. Even among adults there were small declines over this time period: 154,000 adults were using tobacco monthly in 2011 as opposed to 161,000 in 2000, and 121,000 adults as opposed to 128,000 were using cigarettes. And while the number of juveniles perceiving great risk from pack-a-day smoking fell from 38,000 to 32,000 between 2000 and 2011, while 346,000 adults perceived great risk from it in 2011, as opposed to 315,000 in 2000.


Footnotes

  1. According to the Crime and Homicide Reports of the North Dakota Attorney General’s office, index crimes are reported to the National Uniform Crime Reporting program managed by the Federal Bureau of Investigation in order to broadly describe the level of criminal activity around the country. They are divided into two categories, violent and property-related. The violent index crimes tracked by North Dakota are murder and non-negligent manslaughter, forcible rape, robbery, and aggravated assault. The property index crimes tracked by the state are burglary, larceny and theft, and motor vehicle theft.
  2. The North Dakota Association of Oil and Gas Producing Counties lists the following counties as its members: Adams, Billings, Bottineau, Bowman, Burke, Divide, Dunn, Golden Valley, Hettinger, McHenry, McKenzie, McLean, Mercer, Mountrail, Renville, Slope, Stark, Ward, and Williams.
  3. The National Surveys on Drug Use and Health define a “juvenile” as any person between the ages of 12 and 17 years, and an adult as any person aged 18 years or older.
  4. The National Surveys on Drug Use and Health define “binge drinking” as consuming five or more alcoholic beverages in one sitting.

Ohio Production and Injection Well Firms Map

Our latest Ohio-focused map shows the many companies involved in directional drilling in the state and the contact information for these firms.

Layer Descriptions

1. UNIVERSAL WELL SERVICES

Universal Well Services Inc. is a major firm involved in all manner of directional drilling services with an office in Wooster, OH, one in Allen, KY, six in Pennsylvania, six in Texas, and one in West Virginia

2. LLC & MLP’s

This is an inventory of 410 Ohio directional drilling affiliated LLC and MLP firms and contact information. Seventy-eight percent of these firms are domiciled in Ohio. The other primary states that house these firms are Pennsylvania (22), Texas (23), and West Virginia (9). The Economist wrote of these types of firms:

The move away from the C corporation began in earnest in 1975. Wyoming, that vibrant business hub, adopted a new entity structure, the limited-liability company (LLC). Imported from Panama, it provided the tax treatment of a partnership while preserving the corporate protection from individual liability for company debts and litigation. Other states followed in adopting the model. Businesses were quick to see the advantages. The various new types of firm that have risen in the wake of the LLC… make similar use of partnership structures. They have tended to be industry- or sector-specific, at least to begin with. The energy business has a lot of MLPs not only because it needs capital but because it is an easy place to set them up: since 1987, tax law has allowed “mineral or natural resource” companies to operate as listed partnerships, while withholding that privilege from others. But as with other pass-through structures, the constraints are being lowered and circumvented.

3. DRILLING FIRMS

This is an inventory of 393 Ohio Department of Natural Resources permitted directional and injection drilling firms with single locations and their contact information. Seventy-six percent of these firms are domiciled in Ohio with the other primary states of incorporation being Pennsylvania (15), Texas (14), Michigan (11), and West Virginia (9). Only 3 of these firms listed in the Ohio RBDMS Microsoft Access Database contained correct contact information or addresses. According to ODNR staff – and primary FOIA contact:

… it looks like the [active drillers] list [doesn’t contain] much information on the companies in general…We have mailing information for the operating companies, but a lot of the time they subcontract out to get their drillers. We do not require the information of the drillers they contract.

4. ADDITIONAL DRILLERS

This is an inventory of the 40 known locations for six firms permitted to drill in Ohio. The same lack of contact and address data for these firms were true for this data. The primary firms are Butch’s Rathole and Nomac Drilling Corporation. Given that the ODNR RBDMS does not indicate the actual location from which these companies migrated into the Ohio shale industry we decided to include all known locations for these firms.

5. CANADIAN FIRMS

This is an inventory of the 14 known locations for the 5 Canadian drilling firms permitted in Ohio. The primary firm is Savannah Drilling, which is composed of 10 locations across Alberta and Saskatchewan.

6. AMERICAN SUPPORTING CO.

This is an inventory of 1,837 Ohio energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion. Seventy-five percent (1,386) of these firms are domiciled in Ohio with secondary hotspots in Texas (76), West Virginia (65), Pennsylvania (49), Michigan (34), Colorado (27), Illinois (22), Oklahoma (21), California (16), New York and New Jersey (27), Kentucky (14).

7. ADDITIONAL SUPPORTING CO.

This shows an inventory of 10 Ohio energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion extracted from the ODNR RBDMS that did not contain locational or contact information.

8. CANADIAN SUPPORTING CO.

This is an inventory of 5 (1 company Mar Oil Company was not found) Canadian energy firms operating in the Utica and Marcellus shale or servicing it in a secondary or tertiary fashion.

9. BRINE HAULERS

This is an inventory of 505 ODNR permitted brine haulers active in the transport and disposal of hydraulic fracturing waste either via injection or waste landfill disposal. Seventy-six percent of these firms are domiciled in Ohio with the primary cities being Zanesville (18), Cambridge, Wooster, and Millersburg (12 each), Canton and Marietta (11 each), Columbus (9), Jefferson (9), Logan (8), and North Canton and Newark (7 each). Pennsylvania and West Virginia are home to 84 and 32 brine haulers, respectively.

Mapping California’s State Bill 4 (SB4) Well Stimulation Notices

By Kyle Ferrar, CA Program Coordinator, FracTracker Alliance

Introduction

California passed State Bill 4 (SB4) in September, 2013 to develop and establish a regulatorySanta Barbara Channel_10.7.13 structure for unconventional resource extraction (hydraulic fracturing, acidizing, and other stimulation techniques) for the state.   As a feature of the current version of the regulations, oil and gas drilling/development operators are required to notify the California Department of Conservation’s Division of Oil Gas and Geothermal Resources (DOGGR), as well as neighboring property owners, 30 days prior to stimulating an oil or gas well.  In addition to property owners having the right to request baseline water sampling within the the following 20 days, DOGGR posts the well stimulation notices to their website.

Current State of Oil and Gas Production

The DOGGR dataset of well stimulation notices was downloaded, mapped, the dataset explored, and well-site proximity to certain sites of interest were evaluated using GIS techniques. First, the newest set of well stimulation notices, posted 1/17/14 were compared to a previous version of the same dataset, downloaded 12/27/13. When the two datasets are compared there are several distinct differences. The new dataset has an additional field identifying the date of permit approval and fields for latitude/longitude coordinates. This is an improvement, but there is much more data collected in the DOGGR stimulation notification forms that can be provided digitally in the dataset, including sources of water, amount of water used for stimulation, disposal methods, etc… An additional 60 wells have been added to the dataset, making the total count now 249 stimulation notices, with 37 stimulated by acid matrix (acidizing), 212 hydraulically fractured, and 3 by both. Of the 249, 59 look to be new wells as the API identifcation numbers are not listed in the DOGGR “AllWells.zip” database here, while 187 are reworks of existing wells. A difference of particular interest is the discrepancy in latitudes and longitudes listed for several well-sites. The largest discrepancy shows a difference of almost 10,000 feet for an Aera Energy well (API 3051341) approved for stimulation December 23, 2013. The majority of the well stimulations (246/249) are located in Kern County, and the remaining three are located in Ventura County.

Figure 1. Stimulation Notices and Past/Present Oil and Gas Wells
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Well Spacing

As can be seen in Figure 1, the well stimulations are planned for heavily developed oil and gas fields where hydraulic fracturing has been used by operators in the past. California is the 4th largest oil producing state in the nation, which means a high density of oil and gas wells. Many other states limit the amount of wells drilled in a set amount of space in support of safer development and extraction. In Ohio, unconventional wells (>4,000 foot depths) have a 1,000 foot spacing requirement , West Virginia has a 3,000 foot requirement for deep wells , and the Texas Railroad Commission has set a 1,200 foot well spacing requirement. Using Texas’s setback as an example buffer for analysis, 241/249 of the DOGGR new stimulations are within 1,200 feet of an active oil and gas well. Of the 364 hydraulically fractured oil and gas wells DOGGR has listed as “New” (they are not yet producing, but are permitted and may be in development), 351 are within 1,200 feet of a well identified in DOGGR’s database as an active oil and gas well. One of the industry promoted benefits of using stimulations such as hydraulic fracturing is the ability to decrease the number of well-sites necessary to extract resources and therefore decrease the surface impact of wells. This does not look to be the practice in California.

Environmental Media

Following this initial review of oil and gas production/development, three additional maps were created to visualize the environmental media threatened by contamination events such as fugitive emissions, spills or well-casing failures. The maps are focused on themes of freshwater resources, ambient air quality, and conservation areas.

Freshwater Resources

Figure 2. New Wells, Stimulation Notices and California’s Freshwater Resources
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Freshwater resources are limited in arid regions of California, and the state is currently suffering from the worst drought on record. In light of these issues, the FracMapper map “New Well Stimulations and California Freshwater Resources” includes map layers focused on groundwater withdrawals, groundwater availability, Class II wastewater injection wells, watershed basins, and the United States Geological Survey’s (USGS) National Hydrography Data-set (NHD). Since California does not have a buffer rule for streams and waterways, we used the setback regulation from Pennsylvania for an analysis of the proximity of the well stimulation notices to streams and rivers. In Pennsylvania, 300 feet is the minimum setback allowed for hydraulic fracturing near recognized surface waters. Of the 246 wells listed for new stimulation, 26 are within 300 feet of a waterway identified in the USGS’s NHD. The watersheds layer shows the drainage areas for these well locations. As a side note, the state of Colorado does not allow well-sites located within 100 year flood plains after the flash floods in September 2013 that caused over 890 barrels of oil condensates to be spilled into waterways. Also featured in Figure 2 are the predominant shallow aquifers in California. The current well stimulations posted by DOGGR are located in the Elk Hills (Occidental Inc.), Lost Hills (Chevron), Belridge and Ventura (both Aera Production) oil fields and have all exempted out of a groundwater monitoring plans based on aquifer exemptions, even though the aquifers are a source of irrigation for the neighboring agriculture.   Stimulation notices by Vintage Production in the Rose oil field, located in crop fields on farms, are accompanied by a groundwater and surface water monitoring plan. Take notice of the source water wells on the map that provide freshwater for both the acidizing and hydraulic fracturing operations and the Class II oil and gas wastewater injection wells that dispose of the produced waters. Produced wastewaters may also be injected into Class II enhanced oil recovery water flood wells, and several of the stimulation notices have indicated the use of produced waters for hydraulic fracturing.

Ambient Air Quality

Figure 3. California New Wells, Stimulation Notices and Air Quality
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

Impacts to ambient air quality resulting from oil and gas fields employing stimulation techniques have been documented in areas like Wyoming’s Upper Green River Basin , the Uintah Basin of Utah , and the city of Dish, Texas . Typically, ozone is considered a summertime issue in urban environments, but the biggest threat to air quality in these regions has been elevated concentrations of ozone, particularly in the winter time. Ozone levels in these regions have been measured at concentrations higher than would typically be seen in Los Angeles or New York City. In Figure 3, the state and federal ozone attainment layers show that the areas with the highest concentrations of “new” wells and the DOGGR New Stimulation Notices do not pass ambient air criteria standards to qualify as “attainment” status for either state or federal ambient ozone compliance, meaning their ambient concentrations reach levels above health standards. Other air pollutants known to be released during oil and gas development, stimulation, and production include volatile organic compounds (VOCs) such as Benzene, Toluene, Ethylbenzene and xylene (BTEX); carbon monoxide (CO); hydrogen sulfide (H2S), Nitrogen Oxides (NOx), and sulfur dioxide (SO2), and methane (CH4), a potent greenhouse gas. It is important to point out that ground level ozone is not emitted directly but rather is created by chemical reactions between NOx and VOCs. Besides ozone, all these other air pollutants are in “attainment” in California except NOx in Los Angeles County. There have not been any stimulation notices posted in Los Angeles County, but the South Coast Air Quality Monitoring District identifies 662 recent wells that have been stimulated using hydraulic fracturing, acidizing, or gravel packing. See the Local Actions map of California for these well sites.

Conservation Areas

Figure 4. New Wells, Stimulation Notices and Conservation Areas
Click on the arrows in the upper right hand corner of the map for the legend and to view the map fullscreen.

The map in Figure 4, “New Well Stimulations and Conservation Lands”, features land use planning maps developed by California and Federal agencies for conservation of the environment for multiple uses, ranging from recreation to farming and agriculture.  Many of the Stimulation Notices as well as “new” well sites located in Kern County are located in or along the boundary of the San Joaquin Valley Conservation Opportunity; land identified by the California Department of Fish and Game, Parks and Recreations, and Transportation (Caltrans) as important for wildlife connectivity. Oil and gas development inevitably results in loss of habitat for native species. Habitat disturbance and fragmentation of the natural ecosystems can pose risks particularly for endangered species like the San Joaquin Kit Fox, California Condor, and the blunt-nosed leopard lizards.

The California Rangeland Priority Conservation Areas layer was created to identify the most important areas for priority efforts to conserve the Oak Savannah grasslands of high diversity that host many grassland birds, native plants, and threatened vernal pool species. The areas of high biodiversity value are marked in red as “critical conservation areas”. The majority of the new well stimulations are encroaching on the borders of these “critical areas,” particularly in the Belridge oil field. The CA Farmland Mapping and Monitoring Program map layer rates land according to soil quality to analyze impacts on California’s agricultural resources. The majority of new stimulations and new oil wells are located on the border of areas designated as “prime farmland,” particularly the Belridge and Lost Hills fields. The Rose field on the other hand is located within the “prime farmland” and “farmland of statewide importance.” Also, well-sites from all fields in Kern County are located on Williamson Act Agricultural Preserve Land Parcels. By enrolling in the program these areas can take advantage of reduced tax rates as they are important buffers to reduce urban sprawl and over-development. Although the point of the act was to protect California’s important farmland and agriculture, some parcels enrolled in the Williamson Agricultural Preserve Act program even house stimulation notice sites and “new” hydraulically fractured wells.

Discussion

While allowing hydraulic fracturing, acidizing and other stimulations until January 1, 2015 under temporary regulations, SB4 requires the state of California to complete an Environmental Impact Review (EIR). New regulations will then be developed on the recommendations of the EIR. The regulations will be enforced by the Division of Oil, Gas, and Geothermal Resources (DOGGR), the agency currently responsible for issuing drilling permits to operators in the state. In some municipalities of California, an additional “land-use” development permit is required from the local land-use agency (Air district, Water District, County, other local municipality or any combination) for an operator to be granted permission to drill a well. In most areas of California a “land-use” permit is not required, and only the state permit from DOGGR is necessary. A simple explanation is DOGGR grants the permit for everything that occurs underground, and in some locations a separate regulatory body approves the permit for what occurs above the ground at the surface. The exceptions are San Benito County which has a 500 foot setback from roads and buildings, Santa Cruz County, which passed a moratorium, Santa Barbara with a de facto ban*, and the South Coast Air quality Monitoring District’s notification requirements, permitting a well stimulation (such as “fracking” or “acidizing”).  For the rest of the state permitting a well  stimulation is essentially the same as permitting a conventional well-site, although it should be recognized that some counties like Ventura have setback and buffer provisions for all (conventional and unconventional) oil and gas wells. Additionally, DOGGR’s provisional regulations do require chemical disclosures to FracFocus and public notifications to local residents 30 days in advance, but lacks public health and safety provisions such as setbacks, continuous air monitoring, and the majority of wells in the notices are exempt from groundwater monitoring,   While public notifications and chemical disclosures are all important for liability and tracking purposes, they are no substitute for environmental and engineering standards of practice including setbacks and other primary protection regulations to prevent environmental contamination. The state-sponsored EIR is intended to inform these types of rules, but that leaves a year of development without these protections.
*Santa Barbara County requires all operators using hydraulic fracturing to obtain an oil drilling production plan from the Santa Barbara County Planning Commission. No operator has applied for a permit since the rule’s passing in 2011.

References

  1. DOGGR. 2014. Welcome to the Division of Oil, Gas and Geothermal Resources.  Accessed 1/28/14.
  2. Lawriter Ohio Laws and Rules. 2010. 1501:9-1-04 Spacing of wells. Accessed 1/29/14.
  3. WVDNR. 2013. Regulations. Accessed 1/29/14.
  4. Railroad Commission of Texas. 2013. Texas Administrative Code. Accessed 1/28/14.
  5. PADEP. 2013. Act 13 Frequently Asked Questions.  Accessed 1/29/14.
  6. U.S.EPA. 2008. Wyoming Area Designations for the 2008 Ozone National Ambient Air Quality Standards. Accessed 1/29/14.
  7. UT DEQ. 2014. Uintah Basin. Accessed 1/29/14.
  8. UT DEQ. 2012. 2012 Uintah Basin Winter Ozone & Air Quality Study.
  9. Wolf Eagle Environmental. 2009. Town of Dish, TX Ambient Air Monitoring Analysis.

Sustainability and Unconventional Drilling: Pt. II

Different Definitions, Shared Discourse

By Jill Terner, PA Communications Intern, FracTracker Alliance

In the previous installment of this three part blog series, I focused on how industry defines sustainability, and how industry mobilizes research done on unconventional drilling in an attempt to label drilling a sustainable practice. That sustainability lends itself to industry’s mostly economic definition. Other groups, which for the sake of this series I will refer to as pro-environmental groups, use a different definition while sharing discourse with industry. This pattern makes sustainability a good example of a boundary object1. The versatile nature of a concept like sustainability makes it possible for different groups of people to talk about it, while each maintains their own understanding of what it is. Here, I will look at sustainability through the lens of groups charged with environmental regulation and protection, and discuss how they might use the same science as industry to tell a different story.

Sustainability Defined by Environmental Groups

While industry adheres to an economic model of sustainability, pro-environmental groups factor in environmental and social sustainability. These three facets – economic, environmental, and social – comprise a more holistic definition of sustainability, wherein the benefits of one facet do not outweigh the costs associated with another2. Focusing only on one component while downplaying others, then, would be inherently unsustainable. In particular, this view means recognizing that things like water quality and the environment are not entities we can separate from things we may care more about, like economic development3.

For example, Perkins (2012) suggests taking this holistic approach to development by rejecting one-or-the-other thinking and by decentralizing community decision-making. Through this people-and-place specific method of development regulation, the voices of all participants are heard. This process leads to representation of both industrial and pro-environmental interest groups, which, in turn, propagates social equity because everyone’s voices are being heard.

In terms of economic sustainability, environmental groups view unconventional drilling as a double-edged sword. While industry related job creation might see positive gains, other sectors of the local economy may be at a loss, particularly arenas that rely on environmental conservation4. As many of the areas slated to host drilling are non-metropolitan areas where activities like agriculture, hunting, and fishing are popular, environmental interest groups warn against drilling in these regions for economic reasons. Just as general sustainability should be viewed holistically, so should economic sustainability; all sectors of the local economy should be considered, not just those related to drilling.

A good way to illustrate this point would be to look at areas like the Marcellus Shale in Pennsylvania and the southern tier of New York. Here, outdoor tourism related industries accounted for over $200 million in 20084. A potential secondary source of income for these areas is owners of second homes that are used to escape the harshness of everyday life. Public fear of industrial consequences, regardless or whether those fears are entirely realistic, could stymy these income sources for areas located over shale formations. The industrial consequences themselves could render the environment untenable to future re-development of outdoor recreational industries4.

Environmentally speaking, regulatory groups and local leaders view sustainable practices as those that occur with the least amount of environmental impact possible3. Air and water pollution primarily related to industry emissions are a major concern, however other environmental threats are also common. These include diesel emissions from truck traffic introduced by industry, degradation of the natural landscape due to industry activity, as well as noise and light pollution5, 6. All of these things must be mitigated in order to substantiate environmental sustainability.

Acknowledging that introducing industry to a community could have different direct and indirect socioeconomic impacts on different demographics and acting on this intersectionality constitutes social sustainability2. That is to say, social sustainability means making sure that all groups of a community are involved in the implementation of development, and reaching out to those members who stand to be negatively impacted by industry’s presence. As I mentioned above, making sure that all interests within a community receive fair and adequate representation is one way to do this. As one can imagine, these three components of sustainability are dynamic and connected, and weighing them against one another results in something unsustainable.

How Environmental Regulatory Groups Use Science

As I mentioned in my previous installment of this series, little detailed research has been conducted on any impacts of unconventional drilling on local economies. As a result of this, many environmental regulation and protection groups look at economic patterns that have occurred in other cities and countries. One analogy that researchers have used is that of the “resource curse.”4 This is the tendency for areas rich in natural resources to be economically poor and experience relatively slow economic growth, typically due to conflicting national and state level interests. Proponents of environmental regulation and protection warn against rapid growth of extractive practices in resource rich areas, as it could ultimately lead to a decline in economic growth and stymieing of community betterment.

Related to the “resource curse” is the boom-bust cycle4, 5. Pro-environmental groups pay equal or more attention to the bust as well as the boom. While pro-industry groups may highlight the positive economic outcomes associated with industry, those favoring regulation are quick to speak up about the research done on the bust that often follows. The bust doesn’t necessarily negate the positive findings related to the boom, however such a historical pattern makes it clear that there could be just as many negative consequences for modern day unconventional O&G extraction.

Similar to focusing on the flipside of economic impacts, regulatory groups also draw from research done on the environmental and social impacts of unconventional drilling. These components of sustainability often don’t figure into the equation in industry-funded studies4, so considering them sheds more light on the holistic definition of sustainability. Environmentally speaking, pro-environmental groups focus on studies that address a cumulative hazard, rather than just that of one or two emissions. That is, instead of saying that levels of two or three notable pollutants are below EPA thresholds, studies should refer to the cumulative effect of all the possible pollutants.

With regards to unconventional drilling, preliminary and industry funded studies found that the amount of CO2 released was half that of conventional coal combustion. Later, however, burgeoning research indicated that other pollutants, such as ground level ozone in the air and heightened levels of manganese, strontium, and toluene in the water table can pose a great risk when considered together7.

Additionally, pro-environmental groups focus on the social costs of unconventional drilling. By doing community based participatory research8, as well as focusing on noise and light pollution as consequences that can detract from residents’ quality of life, researchers often find that the presence of industry in communities can be taxing on residents9. Although there is a lack of research on the social impacts of drilling, what little has been done has indicated that if existing social inequalities are not addressed as part of the holistic definition of sustainability, they can worsen after industry becomes present in a community4. Importantly, those who promote regulation espouse the viewpoint that these social burdens are not a necessary cost of industry that might be mollified by economic boons. On the contrary, the social piece is equally as important as the economic and environmental portions of the sustainability pie.

Next Time

In the final installment of this three part series, I will discuss how these two different definitions of sustainability inform the court of public opinion when it comes to the development of unconventional drilling.

Sources

1. Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects: Amateurs and professionals in Berkeley’s museum of vertebrate zoology, 1907-39. Social Studies of Science, 19, 387-420.

2. Perkins, N. D. (2012). The fracturing of place: The regulation of Marcellus Shale development and the subordination of local experience. (research paper). Retrieved from Duquesne University School of Law Legal Studies Research Paper Series. (2012-17).

3. Dernbach, J. C., & Bernstein, S. (2003). Pursuing sustainable communities: Looking back, looking forward. The Urban Lawyer, 35(3), 495-532.

4. Barth, J. M. (2013). The economic impact of shale gas development on state and local economies: Benefits, costs, and uncertainties. New Solutions, 23(1), 85-101.

5. Brasier, K. J., Filteau, M. R., McLaughlin, D. K., Jacquet, J., Stedman, R. C., Kelsey, T. W., & Goetz, S. J. (2011). Residents’ perceptions of community and environmental impacts from development of natural gas in the Marcellus Shale: a comparison of Pennsylvania and New York cases. Journal of Rural Sociology, 26(1), 32-61.

6. Korfmacher, K. S., Jones, W. A., Malone, S. L., & Vinci, L. F. (2013). Public health and high volume hydraulic fracturing. New Solutions, 23(1), 13-31.

7. Smith, K.R., Frumkin, H., Balakrishnan, K., Butler, C. D., Chafe, Z. A., Fairlie, I., Kinney, P., Kjellstrom, T., Mauzerall, D. L., McKone, T. E., McMichael, A. J., & Schneider M. (2013). Energy and human health. Annual Review of Public Health, 34, 159-188.

8. Perry, S. L. (2013). Using ethnography to monitor the community health implications of onshore unconventional oil and gas developments: examples from Pennsylvania’s Marcellus Shale. New Solutions, 23(1), 33-53.

9. Ferrar, K. J., Kriesky, J., Christen, C. L., Marshall, L. P., Malone, S. L., Sharma, R. K., Michanowicz, D. R., & Goldstein, B. D. (2013). Assessment and longitudinal analysis of health impacts and stressors perceived to result from unconventional shale gas development in the Marcellus Shale region. International Journal of Occupational and Environmental Health, 19(2), 104-112.

Ohio Hydrocarbon Production Well Inspections and Violations

Inspections and Violations in Ohio

Only a few states in the U.S. currently release free violations data related to unconventional oil and gas drilling. The Ohio Department of Natural Resources (ODNR) maintains an inventory of well inspections and violations within its RBDMS database. We examined and mapped their data with a focus on hydrocarbon (oil and natural gas) production wells and relevant Class II Injection1 wells – where the high volumes of liquid wastes produced during hydrocarbon extraction are often disposed of, deep within the earth.

By the Numbers

As of January 2013 there were a total of 5,954 hydrocarbon well inspections and 956 “True” violations. “True” violations refer to those inspections that were deemed to be in violation of the Ohio Revised Code (OAC) Chapter 1501:9-3 Saltwater Operation or Chapter 1501:9-1 Oil Well Drilling.  Violations and/or inspections tend to fall under a couple of categories including compliance notices, neighbor phone call, or routine field visits or inspections. There have been 470 and 430 “Complaint” and “Request” based inspections to date, respectively (Table 1).

This graph depicts monthly and cumulative Ohio hydrocarbon production well inspections and ODNR deemed "True" violations between September 2010 and January 2013.

Figure 1. Cumulative OH hydrocarbon production well inspections & ODNR determined true violations (Sept 2010 – Jan 2013)

The ratio of inspections to violations issued over time in Ohio has been somewhat variable, but a trend does seem to be slowly emerging. At the present time average hydrocarbon well inspections are increasing by 7 per month, while true violations are only increasing by 0.5 per month (Figure 1)2. Thus, the ratio of inspections-to-violations declined from its September 2010 high of 13.2 to 3.1 in February 2011. This ratio, however, began to rise shortly thereafter.

Assuming the current trajectory holds, the next ODNR RBDMS update should report approximately 11,696 inspections as of the end of January 2014 and more than 48,000 total inspections by January 2018. This trajectory dictates that we will see roughly 1,500-1,600 true violations by January 2014 and approximately 4,500 by January 2018.

Map Description

The map below displays a monthly updated inventory of Ohio’s hydrocarbon and relevant injection well-related violations. This map will be updated monthly around the 25th of each month. We have established fixed search criteria for the RBDMS Microsoft Access database, which is updated weekly. Inspection purposes include general complaints, civil action, compliance agreement, and criminal actions, while there are myriad inspection descriptions (Table 2).

To view the legend, metadata, and map fullscreen click on the arrows in the top right hand corner of the map.

Inspection Data Availability and Analysis

Significant data gaps exist with respect to latitude-longitude across Ohio’s current inventory of Class II and hydrocarbon well inspections (Note: Data is only available up to February 2013). Below we have analyzed the current gap between “Total” inspections and those “w/Latitude-Longitude” data. We are currently working to close these gaps. The largest gap exists for the “Salt Water Injection Wells All Time” (i.e., Hydraulic Fracturing Waste Class II’s) data with only 3.5% of all inspections accompanied by latitude-longitude coordinates.

Production Wells

  • Pre 9/1/2010 (i.e., First Ohio Utica Permits)
    • Total: 63,707
    • w/Latitude-Longitude: 24,912
    • 39% coverage
  • Post 9/1/2010 (i.e., First Ohio Utica Permits)
    • Total:  13,735
    • w/Latitude-Longitude: 5,917
    • 43% coverage

Salt Water Injection Wells All Time

  • Total: 11,939
  • w/Latitude-Longitude: 413
  • 3.5% coverage

Annular Disposal + Enhanced Oil Recovery + Orphan + Solution Mining Project + Storage Well

  • Total: 15,694
  • w/Latitude-Longitude: 5,300
  • 33.8% coverage 

Tables

The primary columns of importance to the public in the tables below are “Inspection Purpose”, “Inspection Description”, and “Notification Type.” Eighty-three percent (83%) of the state’s production well inspections were for what seem to be routine “Status Checks.” With respect to notification type, most were categorized as “Unknown” (Tables 1 and 3).
Table 1. Ohio production and Class II injection well Inspection Purposes

Code

Definition

Number of Inspections

C

Complaint

470

CAF

Civil Action Follow-up

4

CMF

Compliance Agreement Follow-up

4

NMF

Notice of Material or Substantial Follow-Up

2

NVF

Notice of Violation Follow-Up

99

OF

Order Follow-Up

4

R

Request

430

SC

Status Check

4,802

Unknown

3

Table 2. Ohio production and Class II injection well inspection descriptions

Description

Failure to maintain record of pipeline location

Inadequate pipeline strength

Failure to properly bury pipeline

Well operation causing pollution and contamination

General Safety

Well insufficiently equipped to prevent escape of oil and gas

Failure to legibly identify well

Violation of tank spacing requirements

Violation of tank fire heater spacing requirements

Unattended portable heater less than 50 feet from  tank

Violation of separator spacing requirements

Operating tank heater while oil is being produced

Improperly located oil tank

Equipment pressure rated below operating pressure

No SPCC dike/or failure to keep dike free of water or oil

Unlawful venting or flaring of gas

Failure to have required locks, bull plugs

Well incapable of production

Illegal/Unauthorized annular disposal of brine

Unlawful method of storage or disposal of brine

Dike or pit not able to prevent brine escape

Unlawful use of pit for temporary brine storage

Use of pit of dike for ultimate disposal of brine

Disposal of muds or cuttings in violation of a rule

Failure to keep dike or pit free of brine / other wastes

Illegal/Unauthorized annular disposal of brine

Non registered operator/ Bond/ Insurance

Table 3. Ohio production and Class II injection well notification types

Code

Definition

Number of Inspections

CN

Compliance Notice

470

FVI

Field Visit or Inspection

225

LET

Informal Letter

2

NOV

Notice of Violation

74

OTH

Other Notification

8

PHN

Phone Call

225

Unknown

4,810

 


Endnotes

1. Relevant Class II wells include Salt Water Injection, Annular Disposal, Enhanced Oil Recovery, Orphan, Solution Mining Projects, and Storage Wells

2. If we remove the first month of 2013, the former increases to 9 per month and the latter 0.8 per month.

Songbird Nurseries of Pennsylvania

Guest Blog by Paul T. Zeph, Director of Conservation for Audubon Pennsylvania

Millions of small, beautiful, colorful songbirds that live in the tropics for most of the year venture north each spring to Pennsylvania to nest in our deep, quiet forests—forests that are now in danger of being fracked apart into industrial zones of natural gas extraction.

Pennsylvania’s forests provide nesting habitat for 17% of the world’s Scarlet Tanagers. Photo courtesy of the PA Gaming Commission.

Pennsylvania’s forests provide nesting habitat for 17% of the world’s Scarlet Tanagers. Photo by Jake Dingel, via the PA Game Commission.

The names of these birds are often described by their vibrant colors:  Black-throated Blue Warbler, Scarlet Tanager, Cerulean Warbler, or Rose-breasted Grosbeak. Here, in the deep remnants of Penn’s Woods, they find an abundance of caterpillars and other insects that are critical protein for raising baby birds. Once the young are fledged and finding food on their own, the parents and juveniles head back south in early fall to their “non-breeding” habitat, which is more accurately called the Neotropics; that is, the New World tropics of the Caribbean, Central America and South America.

Most of these Neotropical migrants cannot nest successfully in small woodlots or fragmented forests, and depend upon large, undisturbed tracts of woodland that we call “core” forests.  These are forests that are at least 300 feet from a permanent edge – such as a road, utility corridor, or housing development.  Pennsylvania still has some very large forest blocks, primarily in the northern tier of the state, that serve as bird “nurseries”—places where the nest density is high and many species are successfully fledging young.

A recently-completed Pennsylvania Breeding Bird Atlas is undergoing analysis by many researchers, and the data is helping us to identify the “best of the best” places in the state needed to sustain populations of our Neotropical visitors, for which we have a North American responsibility.  Not surprisingly, these quiet, large blocks of forest are also favorite places for humans to use for passive recreation, relaxation, and spiritual renewal.  If you want a quiet, peaceful place to escape the modern world for a weekend, look for places frequented in June by Blackburnian Warblers or Blue-headed Vireos.


Unconventional drilling and key forest songbird habitat in Pennsylvania. To access the legend, layer descriptions, and other tools, click on the expanding arrows icon in the top-right corner of the map.

Since many populations of our Neotropical species have been dramatically declining over the past 50 years, we need to protect as much nesting habitat as possible.  In 100 years, we will probably see many species disappear from Pennsylvania altogether due to fragmentation and climate change.  Our northern forest blocks may be a last refuge for a number of bird and other animal species that cannot survive in our sprawling suburbs or the ecological changes that will come with a warming planet.

Extensive gas infrastructure in forested Pennsylvania land. Photo by Pete Stern, 2013.

Extensive gas infrastructure in forested Pennsylvania land. Photo by Pete Stern, 2013.

Fracking is a heavily industrialized activity that not only causes short-term fragmentation, noise, and ecological disruption, but can lead to long-term ecological collapse of healthy, intact forest blocks.  Birds are only one of many types of animals that are impacted by the vast array of fracking infrastructure that is becoming all-too-common in our state’s quiet and shady bird nurseries, trout streams, and recreation areas:  widened roads letting in sunlight and nest predators; long, wide pipelines creating miles of permanent edge; thousands of acres of forest floor buried under compacted gravel pads; rain events carrying road and well pad gravel into sensitive headwater streams, burying aquatic life.

We have precious few public lands left in Pennsylvania that have not been leased for mineral extraction.  We must do all that we can to prevent leasing of lands where the state owns the mineral rights; and, where the rights are severed and owned by another, we must find compromises and solutions that keep as much of the forest intact as possible.

Louisiana Shale Viewer Added to FracMapper

Louisiana is the 21st state to have its own shale viewer map on the FracMapper section of our website:


Louisiana Shale Viewer. Please click expanding arrows icon in upper-right corner of the map to access additional details, including the legend.

In addition to production wells and salt water disposal wells, which are available in most states, Louisiana also has some data that is relatively rare, including pits, storage wells, and inspections.  In addition, most of these datasets contain additional information that can be accessed by links in the popup boxes.  Due to the large number of features on the map, users will need to zoom in several clicks, to the point where the “generalized” layers are replaced with the actual data layers.