Posts

https://www.kvpr.org/post/dormant-risky-new-state-law-aims-prevent-problems-idle-oil-and-gas-wells

Idle Wells are a Major Risk

Designating a well as “idle” is a temporary solution for operators, but comes at a great economic and environmental cost to Californians 

Idle wells are oil and gas wells which are not in use for production, injection, or other purposes, but also have not been permanently sealed. During a well’s productive phase, it is pumping and producing oil and/or natural gas which profit its operators, such as Exxon, Shell, or California Resources Corporation. When the formations of underground oil pools have been drained, production of oil and gas decreases. Certain techniques such as hydraulic fracturing may be used to stimulate additional production, but at some point operators decide a well is no longer economically sound to produce oil or gas. Operators are supposed to retire the wells by filling the well-bores with cement to permanently seal the well, a process called “plugging.”

A second, impermanent option is for operators to forego plugging the well to a later date and designate the well as idle. Instead of plugging a well, operators cap the well. Capping a well is much cheaper than plugging a well and wells can be capped and left “idle” for indefinite amounts of time.

Well plugging

Unplugged wells can leak explosive gases into neighborhoods and leach toxic fluids into drinking waters. Plugging a well helps protect groundwater and air quality, and prevents greenhouse gasses from escaping and expediting climate change. Therefore it’s important that idle wells are plugged.

While plugging a well does not entirely eliminate all risk of groundwater contamination or leaking greenhouse gases, (read more on FracTracker’s coverage of plugged wells) it does reduce these risks. The longer wells are left idle, the higher the risk of well casing failure. Over half of California’s idle wells have been idle for more than 10 years, and about 4,700 have been idle for over 25 years. A report by the U.S. EPA noted that California does not provide the necessary regulatory oversite of idle wells to protect California’s underground sources of drinking water.

Wells are left idle for two main reasons: either the cost of plugging is prohibitive, or there may be potential for future extraction when oil and gas prices will fetch a higher profit margin.  While idle wells are touted by industry as assets, they are in fact liabilities. Idle wells are often dumped to smaller or questionable operators.

Orphaned wells

Wells that have passed their production phase can also be “orphaned.” In some cases, it is possible that the owner and operator may be dead! Or, as often happens, the smaller operators go out of business with no money left over to plug their wells or resume pumping. When idle wells are orphaned from their operators, the state becomes responsible for the proper plugging and abandonment.

The cost to plug a well can be prohibitively high for small operators. If the operators (who profited from the well) don’t plug it, the costs are externalized to states, and therefore, the public. For example, the state of California plugged two wells in the Echo Park neighborhood of Los Angeles at a cost of over $1 million. The costs are much higher in urban areas than, say, the farmland and oilfields of the Central Valley.

Since 1977, California has permanently sealed about 1,400 orphan wells at a cost of $29.5 million, according to reports by the Division of Oil, Gas, and Geothermal Resources (DOGGR). That’s an average cost of about $21,000 per well, not accounting for inflation. From 2002-2018, DOGGR plugged about 600 wells at a cost of $18.6 million; an average cost of about $31,000.

Where are they?

Map of California’s Idle Wells

View map fullscreen | How FracTracker maps work

The map above shows the locations of idle wells in California.  There are 29,515 wells listed as idle and 122,467 plugged or buried wells as of the most recent DOGGR data, downloaded 3/20/19. There are a total of 245,116 oil and gas wells in the state, including active, idle, new (permitted) or plugged.

Of the over 29,000 wells are listed as idle, only 3,088 (10.4%) reported production in 2018. Operators recovered 338,201 barrels of oil and 178,871 cubic feet of gas from them in 2018. Operators injected 1,550,436,085 gallons of water/steam into idle injection wells in 2018, and 137,908,884 cubic feet of gas.

The tables below (Tables 1-3) provide the rankings for idle well counts by operator, oil field, and county (respectively).  Chevron, Aera, Shell, and California Resources Corporation have the most idle wells. The majority of the Chevron idle wells are located in the Midway Sunset Field. Well over half of all idle wells are located in Kern County.

Table 1. Idle Well Counts by Operator
Operator Name Idle Well Count
1 Chevron U.S.A. Inc. 6,292
2 Aera Energy LLC 5,811
3 California Resources Production Corporation 3,708
4 California Resources Elk Hills, LLC 2,016
5 Berry Petroleum Company, LLC 1,129
6 E & B Natural Resources Management Corporation 991
7 Sentinel Peak Resources California LLC 842
8 HVI Cat Canyon, Inc. 534
9 Seneca Resources Company, LLC 349
10 Crimson Resource Management Corp. 333

 

Table 2. Idle Well Counts by Oil Field
Oil Field Count by Field
1 Midway-Sunset 5,333
2 Unspecified 2,385
3 Kern River 2,217
4 Belridge, South 2,075
5 Coalinga 1,729
6 Elk Hills 958
7 Buena Vista 887
8 Lost Hills 731
9 Cymric 721
10 Cat Canyon 661

 

Table 3. Idle Well Counts by County
County Count by County
1 Kern 17,276
2 Los Angeles 3,217
3 Fresno 2,296
4 Ventura 2,022
5 Santa Barbara 1,336
6 Orange 752
7 Monterey 399
8 Kings 212
9 San Luis Obispo 202
10 Sutter 191

 

Risks

According to the Western States Petroleum Association (WSPA) the count of idle wells in California has increased from just over 20,000 idle wells in 2015 to nearly 30,000 wells in 2018! That’s an increase of nearly 50% in just 3 years!

Nobody knows how many orphaned wells are actually out there, beneath homes, in forests, or in the fields of farmers. The U.S. EPA estimates that there are more than 1 million of them across the country, most of them undocumented. In California, DOGGR officially reports that there are 885 orphaned wells in the state.

A U.S. EPA report on idle wells published in 2011 warned that existing monitoring requirements of idle wells in California was “not consistent with adequate protection” of underground sources of drinking water. Idle wells may have leaks and damage that go unnoticed for years, according to an assessment by the state Department of Conservation (DOC). The California Council on Science and Technology is actively researching this and many other issues associated with idle and orphaned wells. The published report will include policy recommendations considering the determined risks. The report will determine the following:

  • State liability for the plugging and abandoning of deserted and orphaned wells and decommissioning facilities attendant to such wells
  • Assessment of costs associated with plugging and abandoning deserted and orphaned wells and decommissioning facilities attendant to such wells
  • Exploration of mechanisms to ameliorate plugging, abandoning, and decommissioning burdens on the state, including examples from other regions and questions for policy makers to consider based on state policies

Current regulation

As of 2018, new CA legislation is in effect to incentivize operators to properly plug and abandon their stocks of idle wells. In California, idle wells are defined as wells that have not had a 6-month continuous period of production over a 2-year period (previously a 5-year period). The new regulations require operators to pay idle well fees.  The fees also contribute towards the plugging and proper abandonment of California’s existing stock of orphaned wells. The new fees are meant to act as bonds to cover the cost of plugging wells, but the fees are far too low:

  • $150 for each well that has been idle for 3 years or longer, but less than 8 years
  • $300 for each well that has been idle for 8 years or longer, but less than 15 years
  • $750 for each well that has been idle for 15 years or longer, but less than 20 years
  • $1,500 for each well that has been idle for 20 years or longer

Operators are also allowed to forego idle well fees if they institute long-term idle well management and elimination plans. These management plans require operators to plug a certain number of idle wells each year.

In February 2019, State Assembly member Chris Holden introduced an idle oil well emissions reporting bill. Assembly bill 1328 requires operators to monitor idle and abandoned wells for leaks. Operators are also required to report hydrocarbon emission leaks discovered during the well plugging process. The collected results will then be reported publicly by the CA Department of Conservation. According to Holden, “Assembly Bill 1328 will help solve a critical knowledge gap associated with aging oil and gas infrastructure in California.”

While the majority of idle wells are located in Kern County, many are also located in California’s South Coast region. Due to the long history and high density of wells in the Los Angeles, the city has additional regulations. City rules indicate that oil wells left idle for over one year must be shut down or reactivated within a month after the city fire chief tells them to do so.

Who is responsible?

All of California’s wells, from Kern County to three miles offshore, on private and public lands, are managed by DOGGR, a division of the state’s Department of Conservation. Responsibilities include establishing and enforcing the requirements and procedures for permitting wells, managing drilling and production, and at the end of a well’s lifecycle, plugging and “abandoning” it.

To help ensure operator liability for the entire lifetime of a well, bonds or well fees are required in most states. In 2018, California updated the bonding requirements for newly permitted oil and gas wells. These fees are in addition to the aforementioned idle well fees. Operators have the option of paying a blanket bond or a bond amount per well. In 2018, these fees raised $4.3 million.

Individual well fees:

  • Wells less than 10,000 feet deep: $10,000
  • Wells more than 10,000 feet deep: $25,000

Blanket fees:

  • Less than 50 wells: $200,000
  • 50 to 500 wells: $400,000
  • 500 to 10,000 wells: $2,000,000
  • Over 10,000 wells: $3,000,000

With an average cost of at least $31,000 to plug a well, California’s new bonding requirements are still insufficient. Neither the updated individual nor blanket fees provide even half the cost required to plug a typical well.

Conclusions

Strategies for the managed decline of the fossil fuel industry are necessary to make the proposal a reality. Requiring the industry operators to shut down, plug and properly abandon wells is a step in the right direction, but California’s new bonding and idle well fees are far too low to cover the cost of orphan wells or to encourage the plugging of idle wells. Additionally, it must be stated that even properly abandoned wells have a legacy of causing groundwater contamination and leaking greenhouse gases such as methane and other toxic VOCs into the atmosphere.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Cover photo: Kerry Klein, Valley Public Radio

Photo courtesy of Claycord.com

Tracking Refinery Emissions in California’s Bay Area Refinery Corridor

Air quality in the California Bay Area has been steadily improving over the last decade, and the trend can even be seen over just the course of the last few years. In this article we explore data from the ambient air quality monitoring networks in the Bay Area, including a look at refinery emissions.

From the data and air quality reports we find that that many criteria pollutants such as fine particulate matter (PM2.5) and oxides of nitrogen (NOX) have decreased dramatically, and areas that were degraded are now in compliance.

While air pollution from certain sectors such as transportation have been decreasing, the north coast of the East Bay region is home to a variety of petrochemical industry sites. This includes five petroleum refineries. The refineries not only contribute to these criteria pollutants, but also emit a unique cocktail of toxic and carcinogenic compounds that are not monitored and continue to impact cardiovascular health in the region. This region, aptly named the “refinery corridor” has a petroleum refining capacity of roughly 800,000 BPD (barrels per day) of crude oil.

Petroleum refineries in California’s East Bay have always been a contentious issue, and several of the refineries date back to almost the turn of the 20th century. The refineries have continuously increased their capacities and abilities to refine dirtier crude oil through “modernization projects.” As a result, air quality and health impacts became such a concern that in 2006 and again in 2012, Gayle McLaughlin, a Green Party candidate, was elected as Mayor of the City of Richmond. Richmond, CA became the largest city in the U.S. with a Green Party Mayor. While there have been many strides in the recent decade to clean up these major sources of air pollution, health impacts in the region including cardiovascular disease and asthma, as well as cancer rates, are still disproportionately high.

Regulations

To give additional background on this issue, let’s discuss some the regulations tasked with protecting people and the environment in California, as well as climate change targets.

New proposals for meeting California’s progressive carbon emissions standards were proposed in January of 2017. A vote to decide on the plan to meet the aggressive new climate target and reduce greenhouse gas emissions 40% across all sectors of the economy will happen this month, May 2017! Over the last ten years the refineries have invested in modernization projects costing more than $2 billion to reduce emissions.

However – a current proposal will actually allow the refineries to process more crude oil by setting a standard for emissions by volume of crude/petroleum refined, rather than an actual cap on emissions. The current regulatory approach focuses on “source-by-source” regulations of individual equipment, which ignores the overall picture of what’s spewing into nearby communities and the atmosphere. Even the state air resources board has supported a move to block the refineries from accepting more heavy crude from the Canadian tar sands.

New regulatory proposals incentivize refineries to continue expanding operations to refine more oil, resulting in a larger burden on the health of these already disproportionately impacted environmental justice communities. Chevron, in particular, is upgrading their Richmond refinery in a way as to allow it to process dirtier crude in larger volumes from the Monterey Shale and Canada’s Tar Sands. Since the production volumes of lighter crudes are shrinking, heavier dirtier crudes are becoming a larger part of the refinerys’ feedstocks. Heavier crudes require more energy to refine and result in larger amounts of hazardous emissions.

Upgrades are also being implemented to address greenhouse gas emissions. While the upgrades address the carbon emissions, regulatory standards without strict caps for other pollutants will allow emissions of criteria and toxic air pollutants such as VOC’s, nitrosamines, heavy metals, etc… to increase. In fact, newly proposed emissions standards for refineries will make it easier for the refineries to increase their crude oil volumes by regulating emissions on per-barrel standards. Current refining volumes can be seen below in Table 1, along with their maximum capacity.

Table 1. Bay Area refineries average oil processed and total capacity

Refinery Location Ave. oil processed
Barrels Per Day (2012 est.)
Max. capacity (BPD)
Chevron U.S.A. Inc. Richmond Refinery Richmond 245,271 >350,000
Tesoro Refining & Marketing, Golden Eagle Refinery Martinez 166,000 166,000
Shell Oil Products US, Martinez Refinery Martinez 156,400 158,000
Valero Benicia Refinery Benicia 132,000 150,000
Phillips 66, Rodeo San Francisco Refinery Rodeo 78,400 100,000

Source: California Energy Commission. One barrel of oil = 42 U.S. gallons.

Environmental Health Inequity

The Bay Area, and in particular the city of Richmond, have been noted in the literature as a place where environmental racism and environmental health disparity exist. The city’s residents of color disproportionately live near the refineries and chemical plants, which is noted in early works on environmental racism by pioneers of the idea, such as Robert Bullard (Bullard 1993a,b).

Since the issue has been brought to national attention by environmental justice groups like West County Toxics Coalition, progress has been made to try to bring justice, but it has been limited. People of color are still disproportionately exposed to toxic, industrial pollution in that area. A recent study showed 93% of respondents in Richmond were concerned about the link between pollution and health, and 81% were concerned about a specific polluter, mainly the Chevron Refinery (Brody et al. 2012). Recent health reports continue to show the trend that these refinery communities suffer disproportionately from cases of asthma and cardiovascular disease and higher mortality rates from a variety of cancers.

Health Impact Studies

Manufacturing and refining are known to produce particularly toxic pollution. Additionally, there has been research done on the specific makeup of pollution in the refinery corridor. The best study to do this is the Northern California Household Exposure Study (Brody et al. 2009). They examined indoor and outdoor air in Richmond, a refinery corridor community, and Bolinas, a nearby but far more rural community. They found 33% more compounds in Richmond, along with higher concentrations of each compound. The study also found very high concentrations of vanadium and nickel in Richmond, some of the highest levels in the state. Vanadium and nickel have been shown to be some of the most dangerous PM2.5 components as we previously stated, which gives reason to believe the air pollution in Richmond is more toxic than in surrounding areas.

Another very similar study compared the levels of endocrine disrupting compounds in Richmond and Bolinas homes, and found 40 in Richmond homes and only 10 in Bolinas (Rudel et al. 2010). This supports the idea that a large variety of pollutants with synergistic effects may be contributing to the increased mortality and hospital visits for communities in this region. This small body of research on pollution in Richmond suggests that the composition of air pollution may be more toxic and thus trigger more pollution-related adverse health outcomes than in surrounding communities.

Air Quality Monitoring

As discussed above and in FracTracker’s previous reports on the refinery corridor, the refinery emissions are a unique cocktail whose synergistic effects may be driving much of the cardiovascular disease, asthma, and cancer risk in the region. Therefore, the risk drivers in the Bay Area need to be prioritized, in particular the compounds of interest emitted by the petrochemical facilities.

The targets for emissions monitoring are compounds associated with the highest risk in the neighboring communities. An expert panel was convened in 2013 to develop plans for a monitoring network in the refinery corridor. Experts found that measurements should be collected at 5 minute intervals and displayed to the public real-time. The gradient of ambient air concentrations is determined by the distance from refinery, so a network of three near-fence-line monitors was recommended. Major drivers of risk are supposed to be identified by air quality monitoring conducted as a part of Air District Regulation 12m Rule 15: Petroleum Refining Emissions tracking. According to the rule, fence-line monitoring plans by refinery operators:

… must measure benzene, toluene, ethyl benzene, and xylenes (BTEX) and HS concentrations at refinery fence-lines with open path technology capable of measuring in the parts per billion range regardless of path length. Open path measurement of SO2, alkanes or other organic compound indicators, 1, 3-butadiene, and ammonia concentrations are to be considered in the Air Monitoring Plan.

The following analysis found that the majority of hazardous pollutants emitted from refineries are not monitored downwind of the facility fence-lines, much less the list explicitly named in the regulations above.

As shown below in Figure 1, the most impacted communities are in those directly downwind of the facility. According to the BAAQMD, each petroleum refinery is supposed to have fence-line monitoring. Despite this regulation developed by air quality and health experts, only two out of the five refineries have even one fence-line monitor. Real-time air monitoring data at the Chevron Richmond fence-line monitor and the Phillips 66 Rodeo fence-line monitor can be found on fenceline.org. Data from these monitors are also aggregated by the U.S. EPA, and along with the other local monitors, can be viewed on the EPA’s interactive mapping platform.

Figure 1. Map of Hydrogen Sulfide Emissions from the Richmond Chevron Refinery
Refinery emissions - H2S gradient

Hazardous Emissions and Ambient Pollution

Since the majority of hazardous chemicals emitted from the refineries are not measured at monitoring sites, or there are not any monitoring sites at the fence-line or downwind of the facility, our mapping exercises instead focus on the hazardous air pollution for which there is data.

As shown in the map of hydrogen sulfide (H2S) above, the communities immediately neighboring the refineries are subjected to the majority of hazardous emissions. The map shows the rapidly decreasing concentration gradient as you get away from the facility. H2S would have been a good signature of refinery emissions throughout the region if there were more than three monitors. Also, those monitors only existed until 2013, when they were replaced with a singular monitor in a much better location, as shown on the map. The 2016 max value is much higher because it is more directly downwind of Chevron Refinery.

The interpolated map layer was created using 2013 monitoring data from three monitors that have since been removed. The 2016 monitoring location is in a different location and has a maximum value more than twice what was recorded at the 2013 location.

Table 2. Inventory of criteria pollutant emissions for the largest sectors in the Bay Area

Annual average tons per day
PM10 PM2.5 ROG NOX SOX CO
Area wide 175.51 52.90 87.95 19.92 0.62 161.86
Mobile 20.33 16.27 183.12 380.52 14.93 1541.50
Total Emissions 16.30 12.14 106.58 50.59 45.95 44.31

Table adapted from the BAAQMD Refinery Report. PM10 = particulate matter less than 10 microns in diameter  (about the width of a human hair); PM2.5 = PM less than 2.5 microns in diameter; ROG = reactive organic gases; NOX = nitrogen oxides; SOX = sulfur oxides; CO = carbon monoxide.

Additionally, exposure assessment can also rely on using surrogate emissions to understand where the plumes from the refineries are interacting with the surrounding communities. It is particularly important to also discriminate between different sources of pollution. As we see in Table 2 above, the largest volume of particulate matter (PM), NOX, and CO emissions actually come from mobile sources, whereas the largest source of sulfur dioxide and other oxides (SOX) is from stationary sources. Since the relationship between PM2.5 and health outcomes is most established, the response to ambient levels of PM2.5 in the refinery corridor gives insight into the composition of PM as well as the presence of other species of hazardous air pollution. On the other hand, SO2 can be used as a surrogate for the footprint of un-monitored air toxics.

Pollutants’ Fingerprints

Particulate Matter

Figure 2. Map of fine particulate matter (PM2.5) for the Bay Area Air Quality Management District

View map fullscreen | How FracTracker maps work

Figure 2 above displays ambient levels of PM2.5, and as the map shows, the highest levels of particulate matter surround the larger metro area of downtown Oakland and also track with the larger commuting corridors. The map shows evidence that the largest contributor to PM2.5 is truly the transportation (mobile) sector. PM2.5 is one hazardous air pollutant which negatively impacts health, causing heart attack, or myocardial infarction (MI), among other conditions. PM2.5 is particulate matter pollution, meaning small particles suspended in the air, specifically particles under 2.5 microns in diameter. Exposure to high levels of PM2.5 increases the risk of MI within hours and for the next 1-2 days (Brooks et al. 2004; Poloniecki et al. 1997).While refineries may not be the largest source of PM in the Bay Area, they are still large point sources that contribute to high local conditions of smog.

The chemical make-up of the particulate matter also needs to be considered. In addition, the toxicity of PM from the refineries is of particular concern. Since particulate matter acts like small carbon sponges, the source of PM affects its toxicity. The cocktail of hazardous air toxics emitted by refineries absorb and adsorb to the surfaces of PM. When inhaled with PM, these toxics including heavy metals and carcinogens are delivered deep into lung tissue.

Pooled results of many studies showed that for every 10 micrograms per meter cubed increase in PM2.5 levels, the risk of MI increases 0.4-1% (Brooks et al. 2010).  However, this relationship has not been studied in the context of EJ communities. EJ communities are generally low income communities of color (Bullard 1993), which have higher exposures to pollution, more sources of stress, and higher biological markers of stress (Szanton et al. 2010; Carlson and Chamberlein 2005). All of these factors may affect the relationship between PM2.5 and MI, and increase the health impact of pollution in EJ communities relative to what has been found in the literature.

Sulfur Dioxide

Figure 3 below shows the fingerprint of the refinery emissions on the refinery corridor, using SO2 emissions as a surrogate for the cocktail of toxic emissions. The relationship between SOand health endpoints of cardiovascular disease and asthma have also been established in the literature (Kaldor et al. 1984).

In addition to assessing SO2 as a direct health stressor, it is also the most effective tracer of industrial emissions and specifically petroleum refineries for a number of reasons. Petroleum refineries are the largest source of SO2 in the BAAQMD by far (Table 1), and there are more monitors for SO2 than any of the other emitted chemical species that can be used to fingerprint the refineries. The distribution of SO2 is therefore representative of the cocktail of a combination of the hazardous chemicals released in refinery emissions.

Figure 3. Map of Sulfur Dioxide for the Bay Area Air Quality Management District

View map fullscreen | How FracTracker maps work

Further Research

The next step for FracTracker Alliance is to further explore the relationship between health effects in the refinery communities and ambient levels of air pollution emitted by the refineries. Our staff is currently working with the California Department of Public Health to analyze the response of daily emergency room discharges for a variety of health impacts including cardiovascular disease and asthma.

References

Brody, J. G., R. Morello-Frosch, A. Zota, P. Brown, C. Pérez, and R. A. Rudel. 2009. Linking Exposure Assessment Science With Policy Objectives for Environmental Justice and Breast Cancer Advocacy: The Northern California Household Exposure Study. American Journal of Public Health 99:S600–S609.

Brook, R. D., B. Franklin, W. Cascio, Y. Hong, G. Howard, M. Lipsett, R. Luepker, M. Mittleman, J. Samet, S. C. Smith, and I. Tager. 2004. Air Pollution and Cardiovascular Disease. Circulation 109:2655–2671.

Brooks, R. D., S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, A. Peters, D. Siscovick, S. C. Smith, L. Whitsel, and J. D. Kaufman. 2010. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation 121:2331–2378.

Bullard, R. D. 1993a. Race and Environmental Justice in the United States Symposium: Earth Rights and Responsibilities: Human Rights and Environmental Protection. Yale Journal of International Law 18:319–336.

Bullard, R. D. 1993b. Confronting Environmental Racism: Voices from the Grassroots. South End Press.

Carlson, E.D. and Chamberlain, R.M. (2005), Allostatic load and health disparities: A theoretical orientation. Res. Nurs. Health, 28: 306–315. doi:10.1002/nur.20084

Kaldor, J., J. A. Harris, E. Glazer, S. Glaser, R. Neutra, R. Mayberry, V. Nelson, L. Robinson, and D. Reed. 1984. Statistical association between cancer incidence and major-cause mortality, and estimated residential exposure to air emissions from petroleum and chemical plants. Environmental Health Perspectives 54:319–332.

Poloniecki, J. D., R. W. Atkinson, A. P. de Leon, and H. R. Anderson. 1997. Daily Time Series for Cardiovascular Hospital Admissions and Previous Day’s Air Pollution in London, UK. Occupational and Environmental Medicine 54:535–540.

Rudel, R. A., R. E. Dodson, L. J. Perovich, R. Morello-Frosch, D. E. Camann, M. M. Zuniga, A. Y. Yau, A. C. Just, and J. G. Brody. 2010. Semivolatile Endocrine-Disrupting Compounds in Paired Indoor and Outdoor Air in Two Northern California Communities. Environmental Science & Technology 44:6583–6590.

Szanton SL, Thorpe RJ, Whitfield KE. Life-course Financial Strain and Health in African-Americans. Social science & medicine (1982). 2010;71(2):259-265. doi:10.1016/j.socscimed.2010.04.001.


By Daniel Menza, Data & GIS Intern, and Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Cover photo credit: Claycord.com

Oil and gas production on public lands

Interactive maps show nearness of oil and gas wells to communities in 5 states

As an American, you are part owner of 640 million acres of our nation’s shared public lands managed by the federal government. And chances are, you’ve enjoyed a few of these lands on family picnics, weekend hikes or summer camping trips. But did you know that some of your lands may also be leading to toxic air pollution and poor health for you or your neighbors, especially in 5 western states that have high oil and gas drilling activity?

A set of new interactive maps created by FracTracker, The Wilderness Society, and partner groups show the threatened populations who live within a half mile of  federal oil and gas wells – people who may be breathing in toxic pollution on a regular basis.

Altogether, air pollution from oil and gas development on public lands threatens at least 73,900 people in the 5 western states we examined. The states, all of which are heavy oil and gas leasing areas, include ColoradoNew MexicoNorth DakotaUtah and Wyoming.

Close up of threat map in Colorado

Figure 1. Close up of threat map in Colorado

In each state, the data show populations living near heavy concentrations of wells. For example just northeast of Denver, Colorado, in the heavily populated Weld County, at least 11,000 people are threatened by oil and gas development on public lands (Figure 1).

Western cities, like Farmington, New Mexico; Gillette, Wyoming; and Grand Junction, Colorado are at highest risk of exposure from air pollution. In New Mexico, especially, concentrated oil and gas activity disproportionately affects the disadvantaged and minorities. Many wells can be found near population centers, neighborhoods and even schools.

Colorado: Wells concentrated on Western Slope, Front Range

Note: The threatened population in states are a conservative estimate. It is likely that the numbers affected by air pollution are higher.

In 2014, Colorado became the first state in the nation to try to curb methane pollution from oil and gas operations through comprehensive regulations that included inspections of oil and gas operations and an upgrade in oil and gas infrastructure technology. Colorado’s new regulations are already showing both environmental and financial benefits.

But nearly 16,000 people – the majority living in the northwestern and northeastern part of the state – are still threatened by pollution from oil and gas on public lands.

Many of the people whose health is endangered from pollution are concentrated in the fossil-fuel rich area of the Western Slope, near Grand Junction. In that area, three counties make up 65% of the total area in Colorado threatened by oil and gas development.

In Weld County, just northeast of Denver, more than 11,000 residents are threatened by air pollution from oil and gas production on federal lands. But what’s even more alarming is that five schools are within a half mile radius of wells, putting children at risk on a daily basis of breathing in toxins that are known to increase asthma attacks. Recent studies have shown children miss 500,000 days of school nationally each year due to smog related to oil and gas production.

State regulations in Colorado have helped improve air quality, reduce methane emissions and promote worker care and safety in the past two years, but federal regulations expected by the end of 2016 will have a broader impact by regulating pollution from all states.

New Mexico: Pollution seen from space threatens 50,000 people

With more than 30,000 wells covering 4.6 million acres, New Mexico is one of the top states for oil and gas wells on public lands. Emissions from oil and gas infrastructure in the Four Corners region are so great, they have formed a methane hot spot that has been extensively studied by NASA and is clearly visible from space.

Nearly 50,000 people in northwestern New Mexico – 40% of the population in San Juan County – live within a half mile of a well. 

Dangerous emissions from those wells in San Juan County disproportionately affect minorities and disadvantaged populations, with about 20% Hispanic, almost 40% Native American, and over 20% living in poverty.

Another hot spot of oil and activity is in southeastern New Mexico stretching from the lands surrounding Roswell to the southern border with Texas. Wells in this region also cover the lands outside of Carlsbad Caverns National Park, potentially affecting the air quality and visibility for park visitors. Although less densely populated, another 4,000 people in two counties – with around 50% of the population Hispanic – are threatened by toxic air pollution.

Wyoming: Oil and gas emissions add to coal mining pollution

Pollution from oil and gas development in Wyoming, which has about as many wells as New Mexico, is focused in the Powder River Basin. This region in the northeast of the state provides 40% of the coal produced in the United States.

Oil and gas pollution threatens approximately 4,000 people in this region where scarred landscapes and polluted waterways are also prevalent from coal mining. 

With the Obama administration’s current pause on federal coal leasing and a review of the federal coal program underway, stopping pollution from oil and gas on public lands in Wyoming would be a major step in achieving climate goals and preserving the health of local communities.

Utah: Air quality far below federal standards

Utah has almost 9,000 active wells on public lands. Oil and gas activity in Utah has created air quality below federal standards in one-third of Utah’s counties, heightening the risk of asthma and respiratory illnesses. Especially in the Uintah Basin in northeastern Utah – where the majority of oil and development occurs – a 2014 NOAA-led study found oil and gas activity can lead to high levels of ozone in the wintertime that exceed federal standards.

North Dakota: Dark skies threatened by oil and gas activity

The geology of western North Dakota includes the Bakken Formation, one of the largest deposits of oil and gas in the United States. As a result, high oil and gas production occurs on both private and public lands in the western part of the state.

Nearly 650 wells on public lands are clustered together here, directly impacting popular recreational lands like Theodore Roosevelt National Park.

The 70,000-plus-acre park – named after our president who first visited in 1883 and fell in love with the incredible western landscape – is completely surrounded by high oil and gas activity. Although drilling is not allowed in the park, nearby private and public lands are filled with active wells, producing pollution, traffic and noise that can be experienced from the park. Due to its remote location, the park is known for its incredible night sky, but oil and gas development increases air and light pollution, threatening visibility of the Milky Way and other astronomical wonders.

You own public lands, but they may be hurting you

Pollution from oil and gas wells on public lands is only a part of a larger problem. Toxic emissions from oil and gas development on both public and private lands threaten 12.4 million people living within a half mile of wells, according to an oil and gas threat map created by FracTracker for a project by Earthworks and the Clean Air Task Force.

Now that we can see how many thousands of people are threatened by harmful emissions from our public lands, it is more important than ever that we finalize strong federal regulations that will help curb the main pollutant of natural gas – methane – from being leaked, vented, and flared from oil and gas infrastructure on public lands.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

Federal oil and gas wells in western states produce unseen pollution that threatens populations at least a half mile away. Photo: WildEarth Guardians, flickr.

We need to clean up our air now

With U.S. public lands accounting for 1/5 of the greenhouse gas footprint in the United States, we need better regulations to reduce polluting methane emissions from the 96,000 active oil and gas wells on public lands.

Right now, the Bureau of Land Management is finalizing federal regulations that are expected by the end of 2016. These regulations are expected to curb emissions from existing sources – wells already in production – that are a significant source of methane pollution on public lands. This is crucial, since by 2018, it is estimated that nearly 90% of methane emissions will come from sources that existed in 2011.

Federal regulations by the BLM should also help decrease the risk to communities living near oil and gas wells and helping cut methane emissions by 40 to 45% by 2025 to meet climate change reduction goals.

Final regulations from the Bureau of Land Management will also add to other regulations from the EPA and guidance from the Obama administration to modernize energy development on public lands for the benefit of the American people, landscapes and the climate. In the face of a changing climate, we need to continue to monitor fossil fuel development on public lands and continue to push the government towards better protections for land, air, wildlife and local communities.


By The Wilderness Society – The Wilderness Society is the leading conservation organization working to protect wilderness and inspire Americans to care for our wild places. Founded in 1935, and now with more than 700,000 members and supporters, The Wilderness Society has led the effort to permanently protect 109 million acres of wilderness and to ensure sound management of our shared national lands.

Air emissions from drilling rig

A Review of Oil and Gas Emissions Data in Pennsylvania

By Wendy Fan, 2016 Intern, FracTracker Alliance

From 2011-2013, the PA Department of Environmental Protection (DEP) required air emission data to be conducted and reported by oil and gas drillers in Pennsylvania. We have tried to look at this data in aggregate to give you a sense of the types and quantities of different pollutants. Corresponding to their degree of oil and gas drilling activity, Washington, Susquehanna, Bradford, Greene, and Lycoming counties are the highest emitters of overall pollutants between the specified years. Despite the department’s attempt to increase transparency, the data submitted by the operators severely underestimates the actual amount of pollutants released, especially with regard to methane emissions. Furthermore, gaps such as inconsistent monitoring systems, missing data, and a lack of a verification process of the self-reported data weaken the integrity and reliability of the submitted data. This article explores the data submitted and its implications in further detail.

Why Emissions Are Reported

The U.S. Energy Information Administration (EIA) estimates that U.S. natural gas production will increase from 23 trillion cubic feet in 2011 to over 33 trillion cubic feet in 2040. Pennsylvania, in particular, is one of the states with the highest amount of drilling activity at present. This statistic can be attributed to resource-rich geologic formations such as the Marcellus Shale, which extends throughout much of Appalachia. While New York has banned drilling using high-volume hydraulic fracturing (fracking), Pennsylvania continues to expand its operations with 9,775 active unconventional wells as of June 10, 2016.

Between 2000-2016, drillers in Pennsylvania incurred 5,773 violations and $47.2 million in fines. The PA DEP, which oversees drilling permits and citations, has undergone criticism for their lack of action with complaints related to oil and gas drilling, as well as poor communication to the public*. In order to increase transparency and to monitor air emissions from wells, the DEP now requires unconventional natural gas operators to submit air emission data each year. The data submitted by operators are intended to be publicly accessible and downloadable by county, emission, or well operator.

* Interestingly, PA scored the highest when we rated states on a variety of data transparency metrics in a study published in 2015.

Importance of Data Collected

PA’s continual growth in oil and gas drilling activity is concerning for the environment and public health. Pollutants such as methane, carbon dioxide (CO2), and nitrous oxides (NOx) are all major contributors to climate change, and these are among the more common emissions found near oil and gas activities. Long-term exposure to benzene, also commonly associated with drilling sites, can result in harmful effects on the bone marrow and the decrease in red blood cells. Vomiting, convulsions, dizziness, and even death can occur within minutes to several hours with high levels of benzene.

With such risks, it is crucial for residents to understand how many wells are within their vicinity, and the levels of these pollutants emitted.

Air Monitoring Data Findings & Gaps

Although the DEP collects emission data on other important pollutants such as sulfur oxides (SOx), particulate matter (PM10 and PM2.5), and toluene, this article focuses only on a few select pollutants that have shown the highest emission levels from natural gas activity. The following graphs illustrate emissions of methane, carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), benzene, and volatile organic compounds (VOCs) for the top 10 counties with the highest amounts of natural gas activity. PA wells drilled data (often called SPUD data) will also be referenced throughout the article. Data source: PA SPUD Data.

CMC

PA DEP’s Calculation Methods Codes for Emissions

Well operators self-report an estimate of total emissions in tons per year through either an online or paper reporting system. They must also indicate the method they used to generate this estimate with the Calculation Methods Codes for Emissions (table shown right).

For more information on how the data is prepared and what are the reporting requirements, refer to PA DEP’s Instruction for Completing the Annual Emissions Statement Reporting Forms

Total Amount of Unconventional Wells 2000-2016

AmountofWells

Figure 1

Overall, Washington, Susquehanna, Bradford, Greene, and Lycoming counties were the main emitters of all selected pollutants (methane, CO2, CO, NOx, VOCs, and benzene) throughout Pennsylvania based on tons per year (Fig 1). This trend may be correlated to the amount of natural gas activity that exists within each state as shown in the graph above. The top three Pennsylvania counties with the highest amount of oil and gas activity since 2000 are Washington, Susquehanna, and Bradford with 1,347; 1,187; and 1,091 unconventional active wells, respectively.

Methane Emissions

PA_Methane

Figure 2

In 2012, Susquehanna, Bradford, and Lycoming counties reported the highest amount of methane released with levels at 36,607, 23,350, and 14,648 tons, respectively (Fig 2). In 2013, Bradford, Lycoming, and Greene counties reported the highest amount of methane released with levels at 17,805, 17,265, and 15,296 tons, respectively.

Although the overall trend of methane emission declines from 2012 to 2013, there is an unusual drop in Susquehanna County’s methane emissions from 2012 to 2013. Susquehanna’s levels went from 36,607 tons to 12,269 tons in that timeframe. However, the DEP SPUD data recorded an increase of 190 active wells to 214 active wells from 2012 to 2013 in that same county. Though the well operators did not provide details for this shift, possible reasons may be because of improved methods of preventing methane leaks over the year, well equipment may be less robust as it once was, operators may have had less of a reason to monitor for leaky wells, or operators themselves could have changed.

Lackawanna and Luzerne counties reported zero tons of methane released during the year of 2012 (not shown on graph). There are two possible reasons for this: both counties did not have any unconventional wells recorded in the 2012 SPUD data, which may explain why the two counties reported zero tons for methane emissions, or the levels submitted are a significant underestimation of the actual methane level in the counties. (While there were no new wells, there are existing wells in production in those counties.)

Considering that methane is the primary component of natural gas activity, the non-existent level of methane reported seem highly implausible even with inactive wells on site. Typically, an old or inactive gas well can either be abandoned, orphaned, or plugged. By definition, abandoned wells have been inactive for more than a year, and orphaned wells were abandoned prior to 1985. (Because of this distinction, however, no unconventional wells can be considered “orphaned.”) To plug a well, cement plugs are used to cover up wellbores in order to cease all flow of gas. The act of physically plugging up the wells paints an illusion that it is no longer functioning and has ceased all emissions.

Because of this flawed impression, systematic monitoring of air emissions is often not conducted and the wells are often ignored. Several studies have shown even abandoned and plugged wells are still spewing out small and at times large quantities of methane and CO2. One study published in 2014 in particular measured 19 abandoned wells throughout Pennsylvania, and concluded that abandoned wells were significant contributors to methane emissions – contributing 4-7% of total anthropogenic (man-made) methane emissions in PA.

View methane emissions map full screen: 2012-2013

Carbon Dioxide Emissions

PA_CO2

Figure 3

In 2012, Bradford County reported 682,302 tons of CO2 emitted; Washington County reported 680,979 tons; and Susquehanna reported 560,881 tons (Fig. 3). In 2013, Washington continued to lead with 730,674 tons, Bradford at 721,274 tons, and Lycoming with 537,585 tons of COemitted.

What’s intriguing is according to SPUD data, Armstrong, Westmoreland, and Fayette also had considerable natural gas activity between the two years as shown on the map. Yet, their levels of CO2 emission are significantly lower compared to Lycoming or Susquehanna Counties. Greene County, in particular, had lower levels of CO2 reported. Yet, they had 106 active wells in 2012 and 117 in 2013. What is even more unusual is that Bradford County had 9 more wells than Greene County in 2013, yet, Greene County still had significantly higher CO2 levels reported.

Reasons for this difference may be that Greene County lacked the staff or resources to accurately monitor for CO2, the county may have forgotten to record emissions from compressor stations or other fugitive emission sources, or the method of monitoring may have differed between counties. Whatever the reason is, it is evident that the levels reported by Greene County may not actually be an accurate depiction of the true level of COemitted.

View CO2 emissions map full screen: 2012-2013

Carbon Monoxide Emissions

Spudded wells in PA with reported CO emissions by county 2011-13

Spudded wells in PA with reported CO emissions by county 2011-13

PA_CO

Figure 4

According to the PA SPUD data, the number of new wells drilled in Bradford County dropped from 389 in 2011 to 163 in 2012 to 108 to 2013. The diminishing number of newly drilled wells in this particular county may explain the noticeable outlier in CO emission as seen on the graph (Fig 4).

View CO emissions map full screen: 2011-2013

NOx and VOCs

Compressor stations are also known to emit VOC, NOx, and various greenhouse gases; they run 24/7 and serve multiple wells. Compressor stations are necessary to move the natural gas along the pipelines, and thus, may still be required to function even after some wells have ceased operation. Furthermore, there can be multiple compressor stations in a region because they are installed at intervals of about 40 to 100 miles. This suggests that in addition to drilled wells, compressor stations provide additional avenues for NOx or VOC to leak into the air.

View NOx and VOC emissions maps full screen: VOC 2011-2013 | NOx 2011-2013

Benzene Emissions

Spudded wells in PA with reported benzene emissions by county 2011-13

Spudded wells in PA with reported benzene emissions by county 2011-13

Chart of PA benzene emissions data county to county

Figure 7

The levels of benzene emitted varied the most when compared to the other pollutants presented previously. Generally, the high levels of methane, CO2, and NOx emitted correlate with the high amount of natural gas activity recorded for each county’s number of drilled unconventional wells. However, it is interesting that both Westmoreland and Fayette counties had fewer active wells than Bradford County, yet, still reported higher levels of benzene (Fig 1, Fig 7).

An explanation for this may be the different monitoring techniques, the equipment used on each site which may vary by contractor or well access, or that there are other external sources of benzene captured in the monitoring process.

View benzene emissions map full screen: 2011-2013

Questions Remain

Although the collection and monitoring of air emission from wells is a step in the right direction, the data itself reveals several gaps that render the information questionable.

  • The DEP did not require operators to report methane, carbon dioxide, and nitrous oxide in 2011. Considering that all three components are potent greenhouse gases and that methane is the primary component in natural gas production, the data could have been more reliable and robust if the amount of the highest pollutants were provided from the start.
  • Systematic air monitoring around abandoned, orphaned, and plugged wells should still be conducted and data reported because of their significant impact to air quality. The DEP estimates there are approximately 200,000 wells that have been abandoned and unaccounted for. This figure includes older, abandoned wells that had outdated methods of plugging, such as wood plugs, wood well casings, or no plug at all. Without a consistent monitoring system for fugitive air emissions, the public’s true risk of the exposure to air pollutants will remain ambiguous.
  • All emissions submitted to the DEP are self-reported data from the operators. The DEP lacks a proper verification process to confirm whether the submitted data from operators are accurate.
  • The finalized data for 2014 has yet to be released despite the DEP’s April 2016 deadline. The DEP inadvertently posted the reports in March 2016, but quickly removed them without any notification or explanation as to why this information was removed. When we inquired about the release date, a DEP representative stated the data should be uploaded within the next couple of weeks. We will provide updates to this post when that data is posted but the DEP.

Overall, PA DEP’s valiant attempt to collect air data from operators and to increase transparency is constrained by the inconsistency and inaccuracy of the dataset. The gaps in the data strongly suggest that the department’s collection process and/or the industry’s reporting protocol still require major improvements in order to better monitor and communicate this information to the public.

Air Pollution in the Bay Area’s Refinery Corridor

Emissions from Refineries and other Sources
By
Kyle Ferrar, Western Program Coordinator &
Kirk Jalbert, Manager of Community Based Research & Engagement

Key Takeaways

  • Refineries and petrochemical industry in the Bay Area’s refinery corridor are responsible for the majority of the risk-driving point source emissions in this region.
  • The Chevron Richmond refinery has the largest refining capacity and emits the most hazardous air pollutants (HAPs).
  • The Tesoro refinery in Martinez and the Shell refinery in Martinez emit the most HAPs per barrel of oil (based on refining capacity).
  • The Valero refinery in Benicia, the Tesoro refinery in Martinez, and the Shell refinery in Martinez emit the most criteria air pollutants (CAPs).
  • If refineries increase their capacity and process more crude, the emissions of these various pollutants will invariably increase.
  • New emissions rules need to prioritize ambient air quality and hold the Air District and elected officials accountable for policies that increase risk.

Overview of the Bay Area’s Refinery Corridor

The Bay Area Air Quality Management District is revising the rules for facilities that emit a variety of hazardous pollutants into the air. The current draft of the new rules could actually increase the amount polluters are allowed to emit. The communities at risk are speaking out to support policies that would reduce the amount of air pollutants rather than increase the limits. In support of these communities, the FracTracker Alliance has focused on analyzing the sources of air pollutants in the region. The East Bay Oil Refinery Corridor is located along the North Shore of the East Bay, stretching from Richmond, CA east to Antioch, CA. The region has been named a “sacrifice zone” for the heavy concentration of petrochemical industrial sites. In addition to the five refineries along the north coast, these communities host a variety of other heavy industries and waste sites. The locations of these facilities have been mapped previously by the FracTracker Alliance, here. In the report we found that people of color, specifically African Americans, are disproportionately represented in the community demographics. Novel results indicate that Hispanic students may be disproportionately impacted by the presence of the petrochemical industry. In this post, we continue the analysis of risk in the region by providing an analysis of the contributions to air pollution from these facilities.

Regulations

Refineries and other sources of air pollution are regulated by the U.S. EPA’s Clean Air Act (CAA). The CAA regulates two classes of pollutants:

  1. Criteria air pollutants (CAPs) – including sulfur dioxide, oxides of nitrogen, carbon monoxide, and particulate matter; and
  2. Hazardous air pollutants (HAPs), which includes a list of 594 carcinogenic and non-carcinogenic chemicals that pose a risk to those exposed.

In addition, California regulates green-house-gas (GHG) emissions, and refineries are the second largest industrial source of GHGs. These regulations get applied when facilities need to obtain a permit for a new source of air pollution, or if a facility is making a structural change that could significantly affect emissions. Facilities are required to use “Maximum Available Control Technology” as it relates to industry best practices to control emissions. With these existing engineering controls, refinery emissions are released into the air from the multiple sources/processes shown below in Figure 1. Notice that a large amount of emissions are simply from “Leaks.”

Sources of Refinery HAPs

Figure 1. Breakdown of emissions from petroleum refineries (US EPA, 2011)

The new rules drafted by the BAAQMD to regulate emissions from the East Bay Oil Refinery Corridor would not cap emissions at any level. The current proposal outlines limits on emissions per barrel, promoting efficiency rather than focusing on emissions reductions. Air quality in the refinery corridor could be improved only if this approach was proposed in conjunction with emission limits or reductions. But as the currently proposed rules stand, emissions could actually increase. Enforcement procedures for infractions are also limited. If a refinery’s emissions violate the per barrel standards, the refinery has a whole 3 years to address the violation. Also, these new rules come at a time when refineries are moving to increase the volume of crude coming in from other regions, such as Canada’s tar sands and the Bakken Shale. These regions produce much lower “quality” crude oil, with much higher emissions. This all amounts to more air pollution rather than less.

Community and environmental activist groups such as the Communities for a Better Environment (CBE) and the Bay Area Refinery Corridor Coalition have raised specific issues with the proposed rules as they stand. First, they allow for increase emissions when Air District data forecasts increasing refinery emissions, despite declining local and domestic fuels demand. Refining the lower quality crude is more energy intensive, which also results in increased emissions. In order to offset the increased emissions, CBE reports that refineries can just increase total refining production to decrease per barrel averages. This would in affect increase emissions to meet regulatory requirements. In addition, transporting the crude via new shipping routes would put additional communities at elevated risk of railway accidents (CBE, 2015).

Ambient Air Quality

Air quality in the Bay Area has been continuously improving over the last few decades, but these refinery communities are still at a significantly higher risk of dying from heart disease and strokes. The largest disparity is felt by the African-American populations. Data for Richmond, CA shows they are 1.5 times more likely to die from these diseases than the Contra Costa county average (Casanova, Diemoz, Lifshay, McKetney, 2010). Emissions reductions not only favor the local communities such as the refinery corridor that are most impacted, but also all of the downwind communities, specifically the Central Valley. The Air District’s 2012 report of PM provides a summary of these trends. PM is an important because it is “the air pollutant that causes by far the greatest harm to public health in the bay area. It is a useful indices because there is a linear correlation between increasing ambient concentrations and mortality. Figure 2 shows the progress the Bay Area has made, overall. This graph is based on regional monitors and not those in the refinery communities, where improvements have not been as drastic. In Figure 3 below, the graph shows major pollutant drivers of seven health risks and how health impacts have been reduced over this time period. What we see from the bar graph, is that non-diesel anthropogenic point sources of PM contribute the most to risk for the majority of health endpoints considered. Across the entire bay area, refineries account for 6% of all PM (BAAQMD, 2012).

An overview of other chemicals associated with the petrochemical industry in ambient air and their resulting health effects are outlined in tables 1-3 below. This is by no means a comprehensive list, but these are chemicals of primary concern, specific to petroleum refinery emissions, and are known risk drivers for the region.

Fig 2 PM

Figure 2. Measurements of PM, averaged across the entire bay area, over time – showing an overall improvement in air quality.

Fig 3 health impacts

Figure 3. Contribution of different species of air pollution to health impacts. The analysis is specific to the bay area and compares health risks estimates from the past (1980s) to estimates in 2012.

Table 1. Health impacts from criteria air pollutants

Criteria Air Pollutants
Compound Health Effect
Sulfur Dioxide (SO2) and Oxides of Nitrogen (NOx) Array of adverse respiratory effects, airway inflammation in healthy people, increased respiratory symptoms in people with asthma
Carbon Monoxide (CO) Harmful health effects associated with the reduction of oxygen delivery to the body’s organs (heart and brain) and tissues
Particulate Matter Increased respiratory symptoms, irritation of the airways, coughing, or difficulty breathing, decreased lung function; aggravated asthma; development of chronic bronchitis; irregular heartbeat; nonfatal heart attacks; and premature death in people with heart or lung disease

Table 2. Health impacts from hazardous air pollutants known to be emitted from petroleum refineries

Hazardous Air Pollutants
Compound Acute Chronic
Benzene, Toluene, Ethylbenzene, Xylenes Neurological effects, Irritation of the eye, skin and respiratory tract Blood disorders (reduced number of red blood cells and aplastic anemia), cancer.
1,3-Butadiene Irritation of the eyes, throat and respiratory tract Cardiovascular effects, leukemia, cancer
Naphthalene Hemolytic anemia, damage to the liver, neurological effects Cataracts, damage to the retina, hemolytic anemia, cancer
PAHs Skin disorders, depression of the immune system Skin disorders (dermatitis, photosensitization), depression of the immune system, damage to the respiratory tract, cataracts, cancer

Table 3. Health impacts from other pollutants emitted from petroleum refineries

Other Pollutants
Compound Mechanism Health Effect
Volatile Organic Compounds (VOC) Combine with NOx in sunlight to create ozone Significantly reduce lung function and induce respiratory inflammation in normal. Healthy people during periods of moderate exercise, symptoms include chest pain, coughing, nausea, and pulmonary congestion
Greenhouse Gases (GHG), including Methane (CH4), Carbon Dioxide (CO2), Nitrous Oxide (N2O) Compounds with high global warming potential contribute to climate change Increase in average temperatures, higher levels of ground-level ozone, increased drought, harm to water resources, ecosystems and wildlife, health risk to sensitive populations

North Coast Emissions

With these gains in ambient air quality it is hard to fathom why regulators would consider allowing refineries to increase emissions inventories. For this analysis, the focus was to map and compare emissions inventories from numerous industrial sites, with a particular focus on the petroleum refineries.

Current refinery capacities as of 2014 are shown in Figure 4, below. The Richmond Chevron has the largest refining capacity in the region, by far. Refining capacity is the maximum amount of crude oil the refinery is allowed to refine, according to their permit. Refining capacity numbers are used in place of actual refined crude volumes for this analysis, because actual crude volumes are considered proprietary information and are not published by the California Energy Commission (CEC).

The Richmond refinery has a raw crude (atmospheric crude is the technical term) refinement capacity over twice as large as the Phillips 66 San Francisco Refinery, and almost 40% larger than the Tesoro (Golden Eagle) refinery, which is the second largest in the region. According to the newly proposed rules, this would allow the Richmond refinery to emit the most pollutants.

The raw total emissions data is shown in Figure 5. The Phillips 66 refinery in Rodeo contributes the least to ambient air quality degradation. The Chevron Richmond refinery processes 40 – 100% more than the four other refineries, and emits 10 – 570% more than the other refiners. This large difference in capacity and emissions means that Chevron Richmond is more efficient than some, but much less efficient than others. To understand the efficiency differences between the refineries, the total HAPs emissions were adjusted by the refining capacity, shown below in Figure 6. With this data we can rank the refining efficiency specifically for HAPs emissions, based on facility capacity. The Tesoro refinery in Martinez and the Shell refinery in Martinez emit the most HAPs per barrel oil (based on refining capacity). From highest emitter to lowest emitter per barrel of crude, the facilities can be ranked:

  1. Tesoro Refining & Marketing Co LLC (Golden Eagle Refinery in Martinez)
  2. Shell Oil Products (Martinez Refinery)
  3. Chevron Products Co Richmond Refinery
  4. Valero Refining Co – California Benicia Refinery
  5. Phillips 66 San Francisco Refinery (Rodeo Refinery)
fig 4 capacity

Figure 4. Operating capacity of refineries. The bars show the maximum amount of crude the refineries are allowed to process daily, in barrels (1 barrel = 42 gallons).

fig 5 total

Figure 5. Total amount of HAPs emissions from East Bay refineries

These refineries along with the other industrial sites in the region have been mapped below in Figure 7. The data has been displayed to show the HAPs emissions from these facilities. The amounts of emissions are shown with graduated circles. The larger the circle, the higher the emissions. The cumulative summation of HAPs is a good value for comparing between facilities with diverse emission inventories (the list of all species of emitted pollutants), but different HAP chemicals have very different effects, both in magnitude and in health impacts. Different chemicals will affect different body systems, as described above in Tables 1-3 above. We have therefore incorporated individual chemical data into the map as well (Figure 7, below). The data displayed shows the total sum of HAPs emitted (in lbs/year) from petrochemical industrial facilities in the region. Explore the map to see emission sources for a selection of important pollutants. Smaller industrial sites/sources have been left out of the map.

Figure 7. Map of the East Bay’s Refinery Corridor with emissions data

View Map Fullscreen | How Our Maps Work
If you open the map into its own page, you can toggle between individual chemical emissions from these facilities. Use the layers tab to change the chemicals displayed. For more information on the individual chemicals, continue reading below.

This unique selection of pollutants was chosen by identifying the highest health risk drivers in the region. They are known to increase both cancer and non-cancer risk for residents in the bay area. The graphs that follow show the emissions inventories reported by each refinery. The refineries are organized on the X –axis according to increasing refining capacity, as they are in Figure 4, above.

Analysis of the graphs show that the Richmond Chevron facility is a largely responsible for 1,2,4-trimethylbenzene, naphthalene, hydrogen cyanide, PAH’s, vanadium, lead and nickel compounds. The Tesoro refinery is mostly responsible for almost all of the 1,3-butadiene, and most responsible for hydrogen sulfide and VOCs. Shell is mostly responsible for the ethylbenzene, much of the mercury and sulfur dioxide emissions, and the most VOCs. Valero in Benicia is responsible for much of the 1,2,4-trimethylbenzene, all BTEX compounds, the most nickel compounds, and the most oxides of nitrogen. And finally, the Phillips 66 refinery in Rodeo with the lowest operating capacity also had the lowest emissions in almost every case except lead, which was very large compared to all refineries except Chevron Richmond. The Valero refinery in Benicia, the Tesoro refinery in Martinez, and the Shell refinery in Martinez emit the most criteria air pollutants (CAPs), including PM2.5 (particulate matter with a diameter less than 2.5 um), sulfur dioxide, and oxides of nitrogen.

Figure 8 – 22. Emissions totals of various air pollutants from East Bay refineries

Marine Terminals

Emissions from marine terminals are also a significant source of HAPs and particulate matter. In the map in Figure 7, the marine terminals are shown with yellow markers. Their relative contributions of total hazardous pollutants are much less than the refineries and other sources, but when we look at specific risk drivers, such as 1,3-butadiene and benzene, we find that their contributions are quite sizable. Marine terminals are also a key component for the refineries looking to access more low-grade crude. Increasing the refining capacity of the refinery will also increase the emissions from the terminals.

The Tesoro Golden Eagle Refinery in Martinez, CA was recently approved for a 30-year lease on a new marine terminal. The new terminal will allow Tesoro to switch to processing lower-cost, lower-quality crude oil from California, Bakken crude, and Canadian tar sands. When crude is transported via ocean liner, besides the issue of air pollution there is the additional risk of an ocean spill. Tom Griffith, Martinez resident and co-founder of the Martinez Environmental Group and founding member of the Bay Area Refinery Corridor Coalition recently summed up the threat, saying:

When you take a close look at what is going on in the marine oil terminals along the refinery corridor from Richmond to Stockton, it’s chilling to imagine what could happen if a huge oil tanker carrying tar sands crude crashed in the Bay! (Earthjustice, 2015)

Incidents

Chevron Fire 2012

Figure 23. Fires at Chevron Richmond Refinery 2012. Photo by John Sebastian Russo for the SF Chronicle

Like oil spills from tankers, there are other risks of industrial accidents for refineries that need to be considered. Accidents or incidents may occur that result in a sudden, large release of air pollution. Looking at the emissions data, the Richmond Chevron refinery with the largest production capacity may seem to be an efficient station compared to the other refineries. However, an explosion and large fire in 2012 there sent 15,000 community members to local hospitals with respiratory distress. The SF Chronicle’s coverage of the story can be found here. (Fire shown in photo right.) The incident resulted from pipes corroding and failing, and the facility failing to make the decision to shut down the process. The resulting plume of smoke is shown in the cover photo of this article. Other major explosions and fires have occurred in the recent past, as well, including a flaring incident in 2014, a fire in 2007, and two other explosion and fire events in 1999 and 1989.

Of course these events are not unique to the Chevron refinery. The Tesoro Golden Eagle refinery has a reputation of being the most dangerous refinery in the country for occupational hazards, and has one of the worst track records of violations.

Conclusions

If refineries increase their capacity and process more crude, the emissions of these various pollutants will invariably increase. Increased emissions elevate risk for surrounding communities, and in the bay area these communities already bare a disparate burden. Additionally, many of the pollutants will be transported with the prevailing wind that blows from the coast up the river delta and into the central valley. In FracTracker’s recent analysis of impacted communities in the refinery corridor, maps of air quality showed that the refinery communities are some of the most impacted in the entire bay area.

In addition, California’s Central Valley has some of the worst air quality in the U.S. Click here to view maps of state air quality of disproportionate impacts by us using CalEnviroScreen 2.0. While many of the HAPs have a greater local impact, others such as ozone have regional impacts, while others like mercury are transported globally.

What we find in this report is that the refineries and petrochemical industry in the refinery corridor are responsible for the majority of the risk-driving emissions in this region. When the risk and total emissions are averaged for the entire Bay Area, the risk outcomes are much less than for those living in the communities hosting the industries. New emissions rules should prioritize contributions of emissions to ambient air pollution loads. The biggest issue with using a “per barrel” emissions limit is that it prioritizes the refining capacity rather than mitigating the existing health impacts. These types of policy decisions deal directly with risk management. The Air Management District must decide what amount of cancer and disease are acceptable to keep the refineries in the communities. An upper limit on emissions makes it easier to set a risk limit, an upper bound for health impacts. The upper limit also holds the Air Management District and elected officials accountable for their policy decisions.

References

  1. U.S.EPA. 2011. Addressing Air Emissions from the Petroleum Refinery Sector U.S. EPA. Accessed 3/15/16.
  2. CBE. 2015. Playing It Safe: Supplemental comment on air district staff proposal, rules 12-15 and 12-16; Evidence of increasing bay area refinery GHG and pm2.5 emissions.. Communities for a Better Environment
  3. Casanova, D. Diemoz, L. Lifshay, J. McKetney, C. 2010. Community Heath Indicators for Contra Costa County. Community Health Assessment, Planning and Evaluation (CHAPE) Unit of Contra Costa Health Services’ Public Health division. Accessed 4/15/16.
  4. BAAQMD. 2012. Summary of PM Report. Bay Area Air Quality Management District. Accessed 4/15/16.

** Feature image of the Richmond Chevron Refinery courtesy of D.H. Parks

Aliso Canyon natural gas leak - Photo by Environmental Defense Fund

A Climate Disaster – California in state of emergency as a result of massive natural gas leak

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

A natural gas well equipment failure in southern California has resulted in the largest point release of methane to the atmosphere in U.S. history. California Governor Jerry Brown has declared a California state of emergency for the incident, and the California Air Resources Board (CARB) has identified the site as the single largest source point of global warming.1 Since October 23, 2015 the failure has been reported to be releasing 62 million cubic feet of methane per day – 110,000 pounds per hour – for a total of about 80 million metric tons thus far. (A running counter for the natural gas leak can be found here, on Mother Jones).2,3 This quantity amounts to a quarter of California’s total methane emissions, and the impact to the climate is calculated to be the equivalent of the operation of 7 million cars.

SoCalGas (a subsidiary of Sempra Energy) reports that nothing can be done to stop or reduce the leak until February or March of 2016. As a result, the nearby community of Porter Ranch has been largely evacuated (30,000 people) due to health complaints and the rotten egg smell of tertbutyl mercaptan and tetradydrothiophen. Air quality sampling, being assessed by the Office of Environmental Health Hazard and Assessment (OEHHA), measured volatile organic compounds, specifically the carcinogen benzene, at concentrations below acute toxicity health standards.4 Exposure to benzene even at low levels presents a risk of cancer and other health hazards. Locals have complained of headaches, sore throats, nosebleeds and nausea. The LA County Department of Public Health has ordered SoCalGas to offer free temporary relocation to any area residents affected. About 1,000 people are suing the company.5 A fly over of the site has been posted to youtube by the Environmental Defense Fund, and can be seen here. The video uses a FLIR camera to take infrared video that shows the leak.

Site Description

CA gas storage and Aliso Canyon natural gas leak

Figure 1. California active natural gas storage fields most active in 2014

The source of the leak is a natural gas storage well operated by SoCalGas in the Aliso Canyon oil field – a drained oil field now used to store natural gas. SoCalGas is the largest natural gas utility in the U.S., distributing natural gas to 20.9 million.4 Aliso Canyon is the largest gas storage field in the state, but there are numerous other gas storage fields in the state that could present similar risks. In Figure 1, to the right, California’s other currently active gas storage fields are shown. Injection volumes of natural gas are summed and averaged over the area of the field, and the Aliso Canyon is shown to have injected over 1,000,000 cubic feet per km2 of natural gas since the beginning of 2014. Other high volume fields include Honor Rancho, McDonald Island Gas, and Wild Goose Gas.

The failed well, known as Standard Sesnon 25, is marked with a red star in the map of gas storage wells shown below (Figure 2). The well was drilled in October of 1953. Reports show that pressures in the well bored reached 2,516 PSI in 2015. If you use the map to navigate around the state of California, it is clear that there are numerous other natural gas storage facilities in California, with wellbore pressures similar to or higher than the reported pressure of Standard Sesnon 25 and other wells in the Aliso Canyon Field. Beyond California, the state of Michigan is reported to have the most natural gas storage by volume, at 1.1 trillion cubic feet.6 The incident that caused the leak was a well casing failure, although the cause of the well casing failure has not yet been identified. There have been numerous editorials written that have painted SoCalGas as a model for contemporary corporate greed and corruption for several reasons, including the removal of safety valves, reports of corrosion, and lack of resources for inspections and repairs.7 Rather than this being a unique case of criminal neglect, casing failures are a statistical likelihood for wells of this age. Well casing failures are a systemic issue of all oil and gas development. Every well casing has a shelf life and will fail eventually.8 Additionally, leaks from gas storage wells have occurred at other SoCalGas natural gas storage facilities in California, such as Montebello and Playa Del Rey.

Figure 2. California’s gas storage wells. The size of orange markers indicates wellhead pressure, as reported in 2015. Blue markers show the volume of gas injected in 2014/2015. The Aliso Canyon leak at ‘Standard Sesnon 25’ natural gas storage well is marked with a red star. Click here to manipulate the map. After expanded, use the “Layers” menu to visualize the data with colored markers rather than size. 

Response

Fixing the problem is therefore much more complicated, overall, in this specific case. Since the well casing has ruptured deep underground, natural gas is leaking in the annular space outside the borehole and spewing from the topsoil surrounding the well head. To stop the leak the production pipe must be plugged below the rupture. All attempts to plug the well from the surface have failed due to the high pressure within the borehole, a 7” inner diameter of the production pipe. Therefore, a relief well is being drilled to intersect the well casing, to inject a mud-chemical cocktail intended to plug the well far below the casing failure. Updates on the response, claims information, and the location of the Community Resource Center can be found here. Additionally, Governor Jerry Brown has declared a state of emergency, which means federal support and a requirement of the state of California to cover the costs.9

The state response to the natural gas leak has included numerous agencies. According to documents from California Public Utilities Commission (CPUC), the agencies leading the response are the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOGGR), the Office of Emergency Services (CalOES), California Air Resources Board (ARB), California Division of Occupational Safety and Health (CalOSHA), the California Energy Commission (CEC), and the CPUC. DOGGR is conducting an independent investigation of the incident. The investigation will include a third party analysis for root-cause issues. CARB is monitoring total methane emissions while the Office of Environmental Health Hazard Assessment with CalEPA are collecting and reviewing air quality data. Coordinated response information can be found on the CalOES site. SoCalGas has submitted a proposal to regulators to raise customer rates in order to raise $30 million for a more proactive approach to inspections and repairs.10

This event is the largest, but is not the first major methane/natural gas leak to occur at a wellsite. Leaks can result from a number of natural and anthropogenic (man made) causes. Besides the natural degradation of well integrity with age, acute events can also cause casing failures. There are documented cases where seismic activity has caused casing failures.

As a result of an earthquake natural fractures in the region can grow and disrupt well bores. In areas of dense drilling, fracture stimulations that propagate improperly or intersect unknown faults. When two wells become interconnected, known as “downhole communication” or a “frack hit” when it occurs due to hydraulic fracturing, spills and leaks can occur due to over-pressurization. In many states, these risks are mitigated by having setbacks between wells. California, the most seismically active state, has minimal setbacks for drilling or fracking oil and gas wells. In previous research, FracTracker found that over 96% of new hydraulic fractures in 2013 were drilled within 1,200 feet of another well, which would even violate setback rules in Texas!

Climate Impacts

Natural gas is hailed by the fossil fuel industry as the bridge fuel that will allow the world to transition to renewables. The main argument claims natural gas is necessary to replace coal as our main source of generating electricity. Burning both coal and natural gas produce carbon dioxide, but natural gas is more efficient. For the same amount of energy production, natural gas produces half as much carbon dioxide emissions. The legitimate threat of climate impacts comes from fugitive (leaked) emissions of methane, before the natural gas can be burned. Since methane is a gas, it is much harder to contain than oil or coal. Methane is also more insulating than carbon dioxide in the atmosphere (34-86 times more insulating), making it a more potent greenhouse gas. The leaked natural gas from the Aliso Canyon well is currently equivalent to 7,000,000 tons of CO2 (Updated here, on Mother Jones).

Current estimates show methane is responsible for 25% of the world’s anthropogenic warming to date. Proponents of the bridge fuel theorize that if methane leakage can be kept under 4% of total production, natural gas power generation will provide a climate-positive alternative to coal. EPA estimates set the leakage rate at 2.4%, but independent research estimates actual rates up to 7.9%.11 The EDF has been conducting an $18 million project focused on quantifying methane leaks from the natural gas industry. A team of 20 researchers from 13 institutions conducted the 2 year study measuring emissions from the Barnett Shale. Details can be found on the Environmental Defense Fund’s Page.12

Natural Gas Leak References

  1. Goldenberg, S. (2016). A single gas well leak is California’s biggest contributor to climate change. The Guardian. Accessed 1/6/16.
  2. Environmental Defense Fund. (2015). Aerial Footage of Aliso Canyon Natural Gas Leak. via YouTube. Accessed 1/5/16.
  3. Lurie, J. (2016). Thousands of Californians are Fleeing an Enormous Methane Leak. Here are 8 Things You Need to Know. Mother Jones. Accessed 1/6/16.
  4. CalOES. (2015). Aliso Canyon Natural Gas Leak. Accessed 1/8/15.
  5. BBC. (2015). California state of emergency over methane leak. Accessed 1/8/15
  6. Ellison, G. (2015). Michigan has most underground natural gas storage in U.S. MLive. Accessed 1/8/15.
  7. Reicher, M. (2015). SocalGas knew of corrosion at Porter Ranch gas facility, doc shows. LA Daily News. Accessed 1/5/16.
  8. Ingraffea et al. (2013). Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000-2012. PNAS. Vol.111 no.30.
  9. Cronin, M. (2015). Why Engineers Can’t Stop Los Angeles’ Enormous Methane Leak. Accessed 1/4/16.
  10. CUUC. (2015). Appendix A. Accessed 1/5/15. [please note that some CPUC files are being taken offline for unknown reasons]
  11. Howarth et al. (2011). Methane and the greenhouse-gas footprint of natural gas from shale formations. Climatic Change. 106:679-690.
  12. Song, L. (2015). Texas Fracking Zone Emits 90% More Methane Than EPA Estimated. InsideClimate News.

Feature Image: Aliso Canyon natural gas leak – Photo by Environmental Defense Fund

Inadequate vapor recovery system lead to residue forming on tank from escaping fumes. Jay-Bee was finally fined in Oct 2014 for these emissions.

Finally Fined – Oct. 5, 2014

Sometimes we all need to be more patient. Enforcement of environmental regulations against a corporation rarely happens, and environmental enforcement against an oil and gas corporation is truly an amazing rarity. These do not come our way with any degree of frequency. However, here is one where an operator was finally fined – and in West Virginia.

The enforcement and fine in Tyler County, WV is especially amazing since it follows just weeks after the Trans Energy guilty pleas and fines totaling $600,000 for three violations of the Clean Water Act in Marshall County, WV.

On October 5, 2014, Jay-Bee Oil and Gas Company was fined $240,000
for violations at its Lisby Pad in Tyler County, WV.

Now, finally, after about a year and a half of deplorable operating conditions on one of the worse (readily visible) well pads that we have seen in years, some enforcement action has finally happened.

Findings of Fact

Jay-Bee Oil & Gas, Inc. owns and operates natural gas well sites known as Lisby / TI-03, RPT8, RPT5, Coffman, W701, TI213, McIntyre, and Hurley, which are located in West Virginia. Here is the timeline for inspections and complaints related to this site:

  • March 28, 2014 – Personnel from the Division of Air Quality (DAQ) conducted an inspection at the Lisby / TI-03 Well Pad in response to a citizen odor complaint.
  • April 1, 2014 – Personnel from the DAQ conducted a follow-up inspection at the Lisby 1 T1-03 Well Pad. Visible emissions were observed from the permanent production storage tanks.
  • April 17, 2014 – Personnel from the DAQ conducted a follow-up inspection at the Lisby 1 TI-03 well pad in response to additional citizen odor complaints
  • July 18, 2014 – In response to a citizen complaint, personnel from the DAQ conducted an inspection at the Lisby 1 T1-03 Well Pad. Objectionable odors and visible emissions were observed from the thief hatch of one of the permanent production storage tanks. A visible liquid leak was also observed on a pipe located at the tank nearest to the vapor recovery unit.
  • September 30, 2014 – Jay-Bee Oil and Gas Company agrees to pay a total civil administrative penalty of two hundred forty thousand dollars ($240,000) to resolve the violations described in this Order (PDF).

Of Note

This enforcement action was not done by the WVDEP Office of Oil & Gas, who seem to only politely try to encourage the drillers to somewhat improve their behavior. The WVDEP Department of Air Quality issued this Notice of Violation and enforcement.

Most of this air quality enforcement process started because of the continued, asphyxiating, toxic gas fumes that poured off the Jay-Bee Lisby pad for months. The residents were forced to move away and have not returned due to lack of confidence that it is safe to live in this area yet. These residents join the growing ranks of others, who are now referred to as Marcellus refugees.

Inadequate vapor recovery system lead to residue forming on tank from escaping fumes

Inadequate vapor recovery system lead to residue forming on tank from escaping fumes

Additional Resources

Below are links to some of the newspaper articles on the same mismanaged well pad:


By Bill Hughes, WV Community Liaison, FracTracker Alliance
Read more Field Diary articles here.

Here They Come Again! The Impacts of Oil and Gas Truck Traffic

Part of the FracTracker Truck Counts Project
By Mary Ellen Cassidy, Community Outreach Coordinator, FracTracker Alliance

I was recently invited by a community member to visit his home. It sits in a valley that is surrounded by drilling pads, as well as compressors and processing stations. While walking down the road that passes directly in front of his home, several caravans of gas trucks roared past and continued far into the evening. Our discussion about the unexpected barrage of this new invasion of intense truck traffic was frequently interrupted by the noise of the diesel engines passing nearby. Along with the noise, truck headlights pierced through the windows of the home, and dust flew up from the nearby road onto his garden.

There are many stories like this about homes and families impacted by the increased truck traffic associated with fracking-related activities. FracTracker is currently working with some of these communities to document the intensity of gas and oil trucks travelling their roads. In response to these concerns we have a launched a pilot Truck Counts project to provide support, resources, and networking opportunities to communities struggling with high volume gas truck traffic.

Preliminary Results

Volunteers in PA, WV, OH and WI have already started to participate in the project, with some interesting results, photos, observations, and suggestions.

TruckCountsChart

To-date, truck counts have varied significantly, as to be expected. Some of the sites where we chose to count passing trucks were very close to drilling activity, and some were more remote. While developing the counting protocol, we often included large equipment and tanker trucks, as well as gas company personnel vehicles (as indicated by white pickup trucks and company logos on the side). While the data vary, the spikes in truck counts do tell the story of a bigger and broader issue – the influx of heavy equipment during certain stages of drilling can be a significant burden on the local community. In total, we counted 676 trucks over 13 sites The average number of trucks that passed by per hour was 44, with a high of 116 an hour, and a low of 5.

About the Project

FracTracker Truck Counts partners with communities to: help identify issues of concern related to high volume gas truck traffic; collect data, photos, videos and narratives related to gas truck traffic; and analyze and share results through shared database and mapping options.

What motivates volunteers to join us in our Truck Counts program? Community concerns include dust, diesel exhaust, spills, accidents, along with other health and safety issues, as well as the cost and inconvenience of deteriorating road conditions resulting from the increased weights and numbers of vehicles. So, what do we already know about the extent of the damages caused by heavy truck traffic?

Public Safety

Several studies have found that shale gas development is strongly linked to increased traffic accidents and that the increases cannot be attributed only to more trucks and people on the road.

Unlike gas truck traffic issues from past oil and gas booms, this recent shale gas boom impacts traffic and public safety in many different ways. The hydraulic fracturing process requires 2,300 to 4,000 truck trips per well, where older drilling techniques needed one-third to one-half as many trips. Another difference is the speed of development that often far outpaces the capacity of communities to build better roads, bridges, install more traffic signals or hire extra traffic officers. Some experts explain increased truck traffic related accidents by pointing to regulatory loopholes such as federal rules that govern how long truckers can stay on the road being less stringent for drivers in the oil and gas industry. Others note that out of state drivers in charge of large heavy duty loads are not always accustomed to the regional weather patterns or the winding, narrow and hilly country roads that they travel.

An Associated Press analysis of traffic deaths in six drilling states shows that in some counties, fatalities have more than quadrupled since 2004 when most other American roads have become much safer in that period (even with growing populations). Marvin Odum, who runs Royal Dutch Shell’s exploration operations in the Americas, said that deadly crashes are “recognized as one of the key risk areas of the business”. Along with the community, gas truck drivers themselves are at risk. According to a study by the National Institute for Occupational Safety and Health, vehicle crashes are the single biggest cause of fatalities to oil and gas workers. The AP study finds that:

  •  In North Dakota drilling counties, the population has soared 43% over the last decade, while traffic fatalities increased 350%. Roads in those counties were nearly twice as deadly per mile driven than the rest of the state
  • From 2009-2013-
    • Traffic fatalities in West Virginia’s most heavily drilled counties…rose 42%. Traffic deaths in the rest of the state declined 8%.
    • In 21 Texas counties where drilling has recently expanded, deaths/100,000 people are up an average of 18 % while for the rest of Texas, they are down by 20%.
    • Traffic fatalities in Pennsylvania drilling counties rose 4%, while in the rest of the state they fell 19 %.
    • New Mexico’s traffic fatalities fell 29%, except in drilling counties, where they only fell 5%.

A separate analysis by Environment America using data from the Upper Great Plans Institute finds that – “While the expanding oil industry in North Dakota has produced many benefits, the expansion has also resulted in an increase in traffic, especially heavy truck traffic. This traffic has contributed to a number of crashes, some of which have resulted in serious injuries and fatalities.” In the Bakken Shale oil region of North Dakota, the number of highway crashes increased by 68% between 2006 and 2010, with the share of crashes involving heavy trucks also increasing over that period.”1

Truck accident and spill in WV. Wetzel County Action Group photo, copyright of Ed Wade, Jr.

Truck accident and spill in WV. Wetzel County Action Group photo, copyright of Ed Wade, Jr.

Public health concerns do not end with traffic accidents and fatalities. An additional cost of heavy gas truck traffic is the strain it places on emergency service personnel. A 2011 survey by State Impact Pennsylvania in eight counties found that:

Emergency services in heavily drilled counties face a troubling paradox: Even though their population has fallen in recent years, 911 call activity has spiked — by as high as 46 percent, in one case.” Along with the demands placed on emergency responders from the number of increased calls, it also takes extra time to locate the accidents since many calls are coming from transient drivers who “don’t know which road or township they are in.

In Bradford County, a heavily drilled area, increased traffic has delayed the response times of emergency vehicles. According to an article in The Daily Review, firefighters and emergency response teams are delayed due to the increased number of accidents, gas trucks breaking down, and gas trucks running out of fuel (some companies only allow refueling once a night).

Road Deterioration and Regional Costs

Roadway degradation from truck traffic. Wetzel County Action Group photo, copyright of Ed Wade, Jr.

Roadway degradation from truck traffic. Wetzel County Action Group photo, copyright of Ed Wade, Jr.

An additional cost often passed on to the impacted communities is infrastructure maintenance. In an article from Business Week, Lynne Irwin, director of Cornell University’s local roads program in Ithaca, New York, states, “Measures to ensure that roads are repaired don’t capture the full cost of damage, potentially leaving taxpayers with the bill.”

This Food and Water Watch Report calculated the financial burden imposed on rural counties by traffic accidents alone, estimating that if the heavy truck accident rate in fracked counties had matched those untouched by the boom, $28 million would have been saved.2

Garrett County is currently struggling with anticipating potential gas traffic and road costs. The Garrett County Shale Gas Advisory Committee uses recent studies from RESI ‘s New York and Pennsylvania data to project gas truck traffic for 6 wells/pad at 22,848 trips/pad and 91,392 total truck trips the first year with increasing numbers for the next 10 years. Like many counties, Garrett County also faces the issue that weights and road use are covered by State, not County code.  There is a possibility, however, that the County could determine best “routes” for the trucks. (This is a prime example of the need and benefit for truck counts.)

Although truck companies and contractors pay permit fees, often they are either insufficient to cover costs or are not accessible to impacted counties. The Texas Tribune reports, “The Senate unanimously passed a joint resolution which would ask voters to approve spending $5.7 billion from the state’s Rainy Day Fund, including $2.9 billion for transportation debt. But little, if any, of that money is likely to go toward repairing roads in areas hit hardest by the drilling boom.”

Commenting on the argument that gas companies already pay their fair share for road damages they cause, George Neal posts calculations on the Damascus Citizens for Sustainability website that lead him to conclude that, although “the average truck pays around 27 times the fuel taxes an average car pays… according to the Texas Department of Transportation, they do 8,000 times the damage per mile driven and drive 8 times as far each year.”

The funds needed to fill the gap between the costs of road repairs and the amount actually paid by the oil and gas companies must come from somewhere. According to a draft report from the New York Department of Transportation looking at potential Marcellus Shale development costs, “The annual costs to undertake these transportation projects are estimated to range from $90 to $156 million for State roads and from $121-$222 million for local roads. There is no mechanism in place allowing State and local governments to absorb these additional transportation costs without major impacts to other programs and other municipalities in the State.”

Poor Air Quality

Caravan of trucks. Photo by Savanna Lenker, 2014.

Caravan of trucks. Photo by Savanna Lenker, 2014.

Along with public safety and infrastructure costs, increased truck traffic associated with unconventional oil and gas extraction is found to be a major contributor to public health costs due to elevated ozone and particulate matter levels from increased emissions of heavy truck traffic and the refining and processing activities required.

In addition to ozone and particulate matter in the air, chemicals used for extraction and development also pose a serious risk. A recent study in the journal of Human and Ecological Health Assessment found that 37% of the chemicals used in drilling operations are volatile and could become airborne. Of those chemicals, more than 89% can cause damage to the eyes, skin, sensory, organs, respiratory and gastrointestinal tracts, or the liver, and 81% can cause harm to the brain and nervous system. Because these chemicals can vaporize, they can enter the body not only through inhalation, but also absorption through the skin.

The Union of Concerned Scientists note that air pollution from traffic may be worsened in North Dakota by the use of unpaved roads that incorporate gravel containing a fibrous mineral called erionite, which has properties similar to asbestos. Trucks driving over such gravel roads can release harmful dust plumes into the air, which could present health risks for workers and area residents

To address and solve these problems associated with heavy truck traffic, information is needed to assess both qualitatively and quantitatively the scope of the increased truck traffic and its impacts on communities. Collection and analysis of data, as well as community input, are needed to both understand the scope of the problem and to inform effective solutions.

Joining FracTracker’s Truck Counts

In response to community concerns about the impacts of increased truck traffic in their community, FracTracker has developed the Truck Count project to document the intensity of oil and gas traffic in your region, map heavy traffic locations, and offer networking opportunities for impacted communities.

Participation in FracTracker’s Truck Counts can provide grassroots organizations with a valuable opportunity to collect local data, engage volunteers, and educate stakeholders and the public. The data, pictures and narratives collected can be used to support concerned citizens’ efforts to reroute traffic from schools, playgrounds and other sensitive areas; to inform decision makers, public health researchers, and transportation agencies; to serve as a potential launching point for more detailed, targeted studies on public health and safety along with economic development analyses; to compare costs and benefits of oil and gas energy sources to the cost and benefits of energy conservation, efficiency and renewable energy.

Also, by sharing your community’s counts and stories on FracTracker.org, you serve other communities by increasing the awareness of the impacts of oil and gas truck traffic nationwide.

FracTracker’s Truck Counts provides the following resources to conduct the counts:

  • information and education on gas and oil truck identification,
  • data sheets for easy counting, and
  • tips for selecting safe and accessible counting locations in your community.

We look forward to working with you and supporting your community. If you are interested in working on this important crowdsourcing project with us, please contact:

Mary Ellen Cassidy
Community Outreach Coordinator
Cassidy@Fractracker.org
304-312-2063


Endnotes and References

  1. In addition, a 2013 study from Resources for the Future found that shale gas development is linked to traffic accidents in Pennsylvania with a significant increase in the number of total accidents and accidents involving a heavy truck in counties with a relatively large degree of shale gas development as compared to counties with less (or no) development.
    The 2013 Food and Water Watch Report finds similar correlations. Shale gas drilling was associated with higher incidents of traffic accidents in Pennsylvania. This trend was strongest in counties with the highest density of fracking wells. The decrease in the average annual number of total vehicle crashes was 39% larger in unfracked rural counties than in heavily fracked counties. (analysis based on data from US Census Bureau, PA DEP and PennDOT).
    In a recent Karnes County, Texas analysis “Traffic accidents and fatalities have skyrocketed in the shale boom areas….with an increases of 1,000% in commercial motor vehicle accidents from 2008-2011.
    According to a 2013 Texas Public Threat Safety Report, “In the three Eagle Ford Shale counties where drilling is most active, the number of crashes involving commercial vehicles rose 470 percent between 2009 and 2011. In the 17 counties that make up the Permian Basin, fatal car crashes involving commercial vehicles have nearly tripled from 14 in 2010 to 41 in 2012.
    As a result of heavily using of publicly available infrastructure and services, fracking imposes both immediate and long-term costs on taxpayers. An Environment Texas study reveals that, “Trucks required to deliver water to a single fracking well cause as much damage to roads as 3.5 million car journeys, putting massive stress on roadways and bridges not constructed to handle such volumes of heavy traffic. Pennsylvania estimates that repairing roads affected by Marcellus Shale drilling would cost $265 million”.
  2. Researchers from the RAND Corporation and Carnegie Mellon University looked at the design life and reconstruction cost of roadways in the Marcellus Shale formation in Pennsylvania. Their findings in Estimating the Consumptive Use Costs of Shale Natural Gas Extraction on Pennsylvania Roadways, note that local roads are generally designed to support passenger vehicles, not heavy trucks, and that “the useful life of a roadway is directly related to the frequency and weight of truck traffic using the roadway.” The study’s findings include:
    1. “The estimated road-reconstruction costs associated with a single horizontal well range from $13,000 to $23,000. However, Pennsylvania often negotiates with drilling companies to rebuild smaller roads that are visibly damaged, so the researchers’ conservative estimate of uncompensated roadway damage is $5,000 and $10,000 per well.
    2. While the per-well figure of $5,000-$10,000 appears small, the increasingly large number of wells being drilled means that substantial costs fall on the state: “Because there were more than 1,700 horizontal wells drilled [in Pennsylvania] in 2011, the statewide range of consumptive road costs for that year was between $8.5 and $39 million,” costs paid by state transportation authorities, and thus taxpayers.”
  3. The feature photo at the top of the page was taken by Savanna Lenker, 2014.
Photo by Evan Collins and Rachel Wadell

These Fish Weren’t Playing Opossum (Creek)

A First-hand Look at the Recent Statoil Well Pad Fire

By Evan Collins and Rachel Wadell, Summer Research Interns, Wheeling Jesuit University

Statoil well pad fire 2205-crop

Monroe Co. Ohio – Site of June 2014 Statoil well pad fire

After sitting in the non-air-conditioned lab on a muggy Monday afternoon (June 30, 2014), we were more than ready to go for a ride to Opossum Creek after our professor at Wheeling Jesuit University mentioned a field work opportunity. As a researcher concerned about drilling’s impacts, our professor has given many talks on the damaging effects that unconventional drilling can have on the local ecosystem. During the trip down route 7, he explained that there had been a serious incident on a well pad in Monroe County, Ohio (along the OH-WV border) on Saturday morning.

About the Incident

Hydraulic tubing had caught fire at Statoil’s Eisenbarth well pad, resulting in the evacuation of 20-25 nearby residents.1 Statoil North America is a relatively large Norwegian-based company, employing roughly 23,000 workers, that operates all of its OH shale wells in Monroe County.2 The Eisenbarth pad has 8 wells, 2 of which are active.1 However, the fire did not result from operations underground. All burning occurred at the surface from faulty hydraulic lines.

Resulting Fish Kill?

Photo by Evan Collins and Rachel Wadell

Several fish from the reported fish kill of Opossum Creek in the wake of the recent well pad fire in Monroe County, OH.

When we arrived at Opossum Creek, which flows into the Ohio River north of New Martinsville, WV, it smelled like the fresh scent of lemon pine-sol. A quick look revealed that there was definitely something wrong with the water. The water had an orange tint, aquatic plants were wilting, and dozens of fish were belly-up. In several shallow pools along the creek, a few small mouth bass were still alive, but they appeared to be disoriented.  As we drove down the rocky path towards the upstream contamination site, we passed other water samplers. One group was from the Center for Toxicology and Environmental Health (CTEH). The consulting firm was sampling for volatile organic compounds, while we were looking for the presence of halogens such as Bromide and Chloride. These are the precursors to trihalomethanes, a known environmental toxicant.

Visiting the Site

After collecting water samples, we decided to visit the site of the fire. As we drove up the ridge, we passed another active well site. Pausing for a break and a peek at the well, we gazed upon the scenic Appalachian hillsides and enjoyed the peaceful drone of the well site. Further up the road, we came to the skeletal frame of the previous Statoil site. Workers and members of consulting agencies, such as CTEH, surrounded the still smoking debris. After taking a few pictures, we ran into a woman who lived just a half-mile from the well site.  We asked her about the fire and she stated that she did not appreciate having to evacuate her home. Surrounding plants and animals were not able to be evacuated, however.

Somehow the fish living in Opossum Creek, just downhill from the well, ended up dead after the fire. The topography of the area suggests that runoff from the well would likely flow in a different direction, so the direct cause of the fish kill is still obscure. While it is possible that chemicals used on the well pad ran into the creek while the fire was being extinguished, the OH Department of Natural Resources “can’t confirm if it (the fish kill) is related to the gas-well fire.”3  In reference to the fire, a local resident said “It’s one of those things that happens. My God, they’re 20,000 feet down in the ground. Fracking isn’t going to hurt anything around here. The real danger is this kind of thing — fire or accidents like that.”4

Lacking Transparency

WV 2014 Photo by Evan Collins and Rachel Wadell

Run by Statoil North America, Eisenbarth well pad in Monroe County, Ohio is still smoking after the fire.

Unfortunately, this sentiment is just another example of the general public being ill-informed about all of the aspects involved in unconventional drilling. This knowledge gap is largely due to the fact that oil and gas extraction companies are not always transparent about their operations or the risks of drilling. In addition to the potential for water pollution, earthquakes, and illness due to chemicals, air pollution from active unconventional well sites is increasing annually.

CO2 Emissions

Using prior years’ data, from 2010 to 2013, we determined that the average CO2 output from unconventional gas wells in 2013 was equal to that of an average coal-fired plant. If growth continued at this rate, the total emissions of all unconventional wells in West Virginia will approximate 10 coal-fired power plants in the year 2030. Coincidentally, this is the same year which the EPA has mandated a 30 percent reduction in CO2 emissions by all current forms of energy production. However, recent reports suggest that the amount of exported gas will quadruple by 2030, meaning that the growth will actually be larger than originally predicted.5 Yet, this number only includes the CO2 produced during extraction. It does not include the CO2 released when the natural gas is burned, or the gas that escapes from leaks in the wells.

Long-Term Impacts

Fires and explosions are just some of the dangers involved in unconventional drilling. While they can be immediately damaging, it is important to look at the long-term impacts that this industry has on the environment. Over time, seepage into drinking water wells and aquifers from underground injection sites will contaminate these potable sources of water. Constant drilling has also led to the occurrence of unnatural earthquakes. CO2 emissions, if left unchecked, could easily eclipse the output from coal-fired power plants – meaning that modern natural gas drilling isn’t necessarily the “clean alternative” as it has been advertised.

References

  1. Willis, Jim ed. (2014). Statoil Frack Trucks Catch Fire in Monroe County, OH. Marcellus Drilling News.
  2. Forbes. (2014). Statoil.
  3. Woods, Jim. (2014). Fish Kill in Eastern Ohio Might be Linked to Fire at Fracking Well. The Columbus Dispatch.
  4. Ibid.
  5. Cushman, John H., Jr. (2014). US Natural Gas Exports No Better for Climate than China’s Coal, Experts Say.

Geopolitics, Shale Gas, and Pipelines

By Ted Auch, OH Program Coordinator, FracTracker Alliance

The “Why?”

Recently, the US has proposed to ship American shale gas abroad to buffer Europe’s 15-30% reliance on Russian gas imports in the face of the annexation of Crimea by Russia – and parallel 80% increases in LNG prices paid by Eastern Europeans to Russia’s Gazprom. The FracTracker map below illustrates all proposed and existing hydrocarbon pipelines across South America, Africa, Europe, the Persian Gulf, and Asia/Russia1. Creating such a map seems the least we could do given that this conflict has been called the “worst crisis with the West since the end of the Cold War.” The situation in Crimea is a chronic crisis; folks like Oxford University’s Jonathan Stern have suggested:

  1. Ukraine owes Gazprom $2 billion for already delivered hydrocarbons,
  2. Russia can easily turn their supplies to Japan which will pay a premium relative to what they are getting from the European Union, and
  3. The duration of European oil and gas contracts with Gazprom, which extend 15-35 years, can’t be broken (Einhorn, 2014; Henderson and Stern, 2014).

The rhetoric framing here in the US has been lead by – and regurgitated by media outlets such as NPR who suggested “Putin Could Send Europe Scrambling For Energy Sources” –  the likes of the Council on Foreign Relations Richard Haass and the Brookings Institution’s Bruce Jones. Both of these entities have the ears of congress domestically and global decision makers at gatherings such as the World Economic Forum in Davos, Switzerland (Gwertzman, 2014; Wade and Rascoe, 2014).

Stepping up hydrocarbon and extraction technologies is not universally espoused:

This is not an immediate-term solution. It’s not even an intermediate-term solution. – Paul Bledsoe, German Marshal Fund, in The New York Times

Fracking is unlikely to reduce gas prices to the extent its proponents desire. – London School of Economics (LSE) (Krauss, 2014; McDonnell, 2014)

Originally, shale gas production was proposed as a way for the US to become “energy independent,” but the dogma has rapidly and in a coordinated fashion shifted to the export of shale gas itself and the technology used to get it out of the ground. This rhetoric is now the focus not just of Washington, DC think tanks but academics (Bordoff, 2014) .

This is a graph depicting global CO2 emissions as a function of per capita Gross Domestic Product (GDP) (US$) across 204 countries CO2 emissions data were gathered from the United Nations Statistics Division (http://unstats.un.org/unsd/ENVIRONMENT/datacollect.htm) and the US Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) (http://cdiac.ornl.gov/trends/emis/meth_reg.html)

Figure 1a) Global CO2 Per Capita Emissions (Tons) Vs Per Capita Gross Domestic Product (GDP) (US $)

The above regions are ripe for – or currently experiencing – significant political uprisings from the Niger Delta and Venezuela to the percolating anger associated with increasing economic stratification and political elite disconnect in countries like Saudi Arabia, Libya, Yemen, Pakistan, Mediterranean Africa writ large, Sudan, and Oman2. Often this discontent is emanating out of citizens’ concerns as to where oil revenues are going and how often the hydrocarbon largesse is concentrated in a handful of political elites and/or oligarchs (Nossiter, 2014). The EIA estimates Russia and China sit atop an estimated 107 billion barrels of shale oil and 1,400 TCF of shale gas. Much of this resource will be required if they are to continue > 2-5% Gross Domestic Product (GDP) growth. The remainder they will undoubtedly use as a cudgel to deflect the west’s suggestions and/or demands within their borders or their “near abroad.” In the case of Russia, the “near abroad” generally refers to the eight former Communist pliable nations – and are incidentally home to nontrivial shale oil and gas reserves – that act as a physical and ideological buffer between them and NATO/European Union states. In an effort to combat the asymmetric hydrocarbon supply and demand issues and secure access to the sizable shale reserves in eastern Europe, the European Union continues to push the European Neighborhood Policy meant to create a “ring of friends”3  – with Ukraine just the latest significant test and the only successes being Tunisia and Moldova (Charlemagne, 2014). With respect to China, their “near abroad” nations include shale oil and gas rich nations like Indonesia, Thailand, Myanmar, Cambodia, and Vietnam, along with ex-Soviet region Central Asian countries which provide China with 80% of its natural gas needs. However, the east-west tug of war has come down to the willingness of the east to offer larger instant loans, cheaper gas, and labor/technology needed to develop pipeline networks. The nexus between these two eastern giants is the proposed – and recently agreed upon – $400 billion Sino-Russian energy cooperation natural gas and oil pipeline. This proposal will stretch across heretofore relatively undisturbed and isolated communities and the ecosystems they have evolved with across the Eurasian Steppe and Siberia (Einhorn, 2014).

This is a graph depicting global CO2 emissions as a function of Oil Consumption Per day (Barrels) across 204 countries CO2 emissions data were gathered from the United Nations Statistics Division (http://unstats.un.org/unsd/ENVIRONMENT/datacollect.htm) and the US Department of Energy's Carbon Dioxide Information Analysis Center (CDIAC) (http://cdiac.ornl.gov/trends/emis/meth_reg.html) Oil consumption data drawn from EnerDatas' World Energy Statistics "Global Energy Statistical Yearbook 2013" (http://yearbook.enerdata.net/)

Figure 1b) Global CO2 Per Capita Emissions (Tons) Vs Oil Consumption Per Day (Barrels) across 204 countries

The fomenting anger and geopolitical combativeness that result from these conditions put the global hydrocarbon transport network at risk. Analogies to R.A. Radford’s The Economic Organization of a P.O.W. Camp can be made here, where the economy that Mr. Radford created flourished until the input stream from the Red Cross stopped. It was at this time that the economy collapsed due to its singular reliance on one input source. Similar analogies exist across emerging, P5+1, and frontier markets worldwide, with many countries largely dependent upon hydrocarbon imports or exports to stoke GDP. Such imports, along with oil consumption, account for 98% of per country CO2 emissions (Table 1 below, Figure 1a-b).  Revolution or even temporary and targeted political instability will fuel the type of hydrocarbon transport/production disruption that will produce the kind of jump condition described by Mr. Radford. A jump condition occurs in situations when suitable hydrocarbon stocks/flows are lost, pipelines are turned off, and alternative transport channels are deemed too perilous. Such a crisis is one that no industrialized or industrializing nation is prepared to manage, making the 2007-08 Financial Crisis look and feel like child’s play. Thus, many private and state actors are proposing new and expanded hydrocarbon pipeline networks to reduce reliance on single-large networks emanating from or traveling through volatile regions. Proposals range from the large Nabucco pipeline proposal connecting Asia and Europe or the Nord Stream AG Baltic Sea Gas Pipeline to small regional or inter-state proposals in Africa, the Persian Gulf, and Eastern Europe.

The “When?”

With this map, which was initiated in January 2014, we have attempted to accurately quantify as many existing and proposed pipeline routes as possible in Europe, Africa, South America, Asia, and the Persian Gulf.  We will be updating this map periodically, and it should be noted that all layers are predetermined aggregations of regional pipelines. Given the recent EIA global shale oil and gas estimates, it is only a matter of time before: a) European nations like Germany, Ukraine, Poland, and Romania begin to explore shale gas extraction in the name of “energy independence,” and b) Argentina hands over the proverbial keys to its 16.2-22.5 billion barrels of oil in the Vaca Muerta shale basin to the likes of Shell or Repsol-YPF (Canty, 2011; Gonzalez and Cancel, 2013; Romero and Krauss, 2013; Staff, 2013). This conversation will be accompanied by additional pipeline proposals for inter- and intra-region transport, all of which we will incorporate into this map on a quarterly basis. If you know of proposals that are not currently shown on the map, please let us know.

Table 1. Major Worldwide Flows of Oil (Thousand Barrels Per Day).

Country

Production (a)

Consumption (b)

(b)/(a)

Export

Import

Saudi Arabia

11726

2861

24

8865

United States

11105

18490

167

7386

Russia

10397

3195

31

7201

China

4372

10277

235

5904

Canada

3856

2281

59

1576

Iran

3589

1709

48

1880

UAE

3213

618

19

2595

Iraq

2987

752

25

2235

Mexico

2936

2144

73

Kuwait

2797

383

14

2414

Brazil

2652

2807

106

Nigeria

2524

270

11

2254

Venezuela

2489

777

31

1712

Norway

1902

218

12

1684

Algeria

1875

328

18

1547

Japan

4726

4591

India

3622

2632

Germany

2388

2219

South Korea

2301

2240

France

1740

1668

Indonesia

1590

616

United Kingdom

1503

Angola

1738

Qatar

1389

Kazakhstan

1355

Libya

Singapore

1360

Spain

1260

Italy

1198

Taiwan

1058

Netherlands

949

Turkey

614

Belgium

607

Compiled from U.S. Energy Information Administration World Overview (http://www.eia.gov/countries/)


References

Bordoff, J., 2014. Adding Fuel to the Fire: How the American shale gas boom can weaken Russia’s hand in Ukraine, Foreign Policy Magazine, Washington, DC.

Canty, D., 2011. Repsol hails largest ever 927 million bbl oil find, ArabianOilandGas.com. ITP Business Portal.

Charlemagne, 2014. How to be good neighbours: Ukraine is the biggest test of the EU’s policy towards countries on its borderlands, The Economist, London, UK.

Einhorn, B., 2014. How the Ukraine Crisis Could Help Clear Beijing’s Smog, Bloomberg Businessweek. Bloomberg LP, New York, NY.

Gonzalez, P., Cancel, D., 2013. Shell to Triple Argentine Shale Spending as Winds Change, Bloomberg Magazine. Bloomberg LP, New York, NY.

Gwertzman, B., 2014. How to respond to Ukraine’s Crisis, Council on Foreign Relations, Washington, DC.

Henderson, J., Stern, J., 2014. The Potential Impact on Asia Gas Markets of Russia’s Eastern Gas Strategy, Oxford Energy Comment. The Oxford Institute for Energy Studies, Oxford, UK, p. 13.

Klein, N., 2008. The Shock Doctrine: The Rise of Disaster Capitalism. Picador.

Klein, N., 2014. Why US Fracking Companies Are Licking Their Lips Over Ukraine: From climate change to Crimea, the natural gas industry is supreme at exploiting crisis for private gain – what I call the shock doctrine, The Guardian, London, UK.

Krauss, C., 2014. U.S. Gas Tantalizes Europe, but It’s Not a Quick Fix, The New York Times, New York, NY.

McDonnell, A., 2014. Fracking is unlikely to reduce gas prices to the extent its proponents desire, The London School of Economics and Political Science – British Politics and Policy. The London School of Economics, London, UK.

Nossiter, A., 2014. Nigerians Ask Why Oil Funds Are Missing, The New York Times, New York, NY.

Romero, S., Krauss, C., 2013. An Odd Alliance in Patagonia, The New York Times, New York, NY.

Staff, 2013. Argentina’s YPF: Swallowed Pride, The Economist, London, UK.

Wade, T., Rascoe, A., 2014. Global gas trade may soften foreign policy of Russia, China, Reuters, New York, NY.


[2]  The EIA estimates Mediterranean Africa contains 5,772 TCF of estimated wet shale natural gas and 1,373,770 million barrels of oil, the Former Soviet Union 4,738 TCF and 310,567 million barrels, and South America 2,465 TCF and 643,864 million barrels 73% of which is in Brazil and Argentina’s Vaca Muerta.

[3] According to The Economist “The Europeans should also rethink the neighbourhood policy, which lumps together disparate countries merely because they happen to be nearby. In the south it may have to devise a wider concept of its interests stretching out to the Sahel, the Horn of Africa and the Middle East. Here Europe has no real friends, lots of acquaintances and not a few enemies. To the east it needs better ways of helping those who want to move closer to the EU.”