Data driven discussions about gas extraction and related topics.

Pennsylvania Drilling Trends in 2018

With the new year underway, it’s an opportune moment to reflect on the state of unconventional oil and gas extraction in Pennsylvania and examine a few of the drilling trends. A logical place to start is looking at the new wells drilled in 2018.

As always, but perhaps even more so than in previous years, unconventional drilling in Pennsylvania is a tale of two shale plays, with hotspots in the southwestern and northeastern corners of the state. The northeastern hotspot seems to be extending westward, including 25 new wells in Jones Township in Elk County (an area shown in dark red near the “St Marys” label on the map). In the southwestern hotspot, the industry continues to encircle Allegheny County, closing in on the City of Pittsburgh like a constrictor.

Screen shot showing spud report for Indiana Township, Allegheny County from 1/1/2017 through 1/4/2019. We suspect these spud dates of 11/29/17 and 11/30/17 are incorrect.

Screen shot showing spud report for Indiana Township, Allegheny County from 1/1/2017 through 1/4/2019. We suspect these spud dates of 11/29/17 and 11/30/17 are incorrect.

Data error? As Pittsburgh-area residents reflect on the past year, some of them must be wondering why a new well pad in Indiana Township, just northeast of the city isn’t shown on the map above. The answer is that the data the Department of Environmental Protection (DEP) has for these wells indicate they were drilled November 29-3o, 2017, although we believe this to be incorrect. FracTracker obtained the data from the Spud Report on January 2, 2019, which indicates seven wells spudded in that two day span on the “Miller Jr. 10602” well pad. This activity drew considerable opposition from families in the Fox Chapel School district in May of 2018, and was therefore widely reported on by the media. An article published on WESA indicates an expected drill date of July 2018, for example.

It turns out the new year is also a good time to remember that our understanding of the oil and gas industry around us is shaped, molded, and limited by the availability and quality of the data. We brought the Indiana Township data error to the attention of DEP, which only confirmed that the operator (Range Resources) entered the spud dates into the DEP’s online system. Perhaps these well were drilled in November of 2018 not 2017? There is even a possibility these wells have yet to be drilled.

Here are a few more dissections of the data, such as it is:

Graph of unconventional (fracking) wells drilled in PA, YTD - Drilling trends

Figure 1: Unconventional wells drilled in PA by year: 2005 to 2018

Wells Drilled Over Time

Barring more widespread data issues, the status of a handful of wells in Indiana Township does not have much of an impact on the overall trend of drilling in the state. There were 779 wells on the report, representing just under 40% of the total from the peak year of 2011, when industry drilled 1,958 wells. The year 2019 was the fourth year in a row where the industry failed to drill 1,000 wells, averaging 719 per year over that span. In contrast, the five years between 2010 and 2014 saw an average of 1,497 wells per year, more than twice the more recent average. As mentioned in our Hazy Future report, projections based on very aggressive drilling patterns are already proving to be out of phase with reality, although petrochemical commodity markets might change drastically in the coming decades.

How long before wells are plugged?

We also like to periodically check to see how long these wells stay in service. In Pennsylvania, there are two relevant well statuses worth following: plugged and regulatory inactive. While there are a number of conditions that characterize regulatory inactive wells, they are essentially drilled wells that are not currently in production, but may have “future utility.” Therefore, the wells are not required to be permanently plugged at this time.

Unconventional wells drilled since 2005 in PA - Drilling trends

Figure 2: This chart shows the percentage of unconventional wells drilled since 2005 with a plugged or regulatory inactive status as of December 31, 2018.

In order to understand some of the finer points, it’s best to use Figure 1 (above) in conjunction with Figure 2. We can see that most of the wells drilled in the initial years of the Marcellus boom have already been plugged, although Figure 1 shows us that the sample size is fairly low for these years. In 2005, for example, 7 of the 9 (78%) unconventional wells drilled in the state that year are already plugged. The following year, 24 of the 37 (65%) wells drilled are now plugged, and an additional 4 (11%) wells have a regulatory inactive status as of the end of 2018. The following year, the combined plugged and inactive wells account for just over 50% of the 113 wells drilled that year, and this trend continues along a fairly predictable curve. An exception is the noticeable bump around the most active drilling years of 2010 and 2011, where there are slightly more wells with a plugged or inactive status than might be expected. It is interesting to note that even the most recent wells are not immune to being plugged, including 8 plugged wells and 4 inactive wells drilled in 2018 that were not able to get past their very first year in production.

Overall, of the 11,675 drilled wells accounted for on this graphic, 851 (7%) are plugged already, with an additional 572 (5%) of wells with an inactive status.  Unconventional wells that are 11 years old have a roughly 50% chance of being plugged or inactive, and we would therefore expect to see the number of these wells skyrocket in the coming years before leveling off, roughly mirroring the drilling boom and subsequent slowdown of Marcellus Shale extraction in Pennsylvania.

Conclusions

Many factors contribute to fluctuations in drilling trends for the Marcellus Shale and other unconventional wells in Pennsylvania. Very cold winters result in high consumption by residential and commercial users. New gas-fired power plants can increase the demand for additional drilling. Recessions and economic conditions are known to reduce the demand for energy as well, and drillers’ heavy debt burdens can slow down operations appreciably. Additionally, other fossil fuel and renewable energy sources compete with one another, altering the market conditions even further. And finally, every oil and gas play eventually reaches a point where the expected results from new wells are not worth the money required to get the hydrocarbons to the surface, and unconventional wells are much more expensive to develop than more traditional operations.

Because of all of these variables, month to month or even year to year fluctuations are not necessarily that telling.  On the other hand, a four-year period where drilling is roughly half of previous extraction is significant, and can’t be easily dismissed as a blip in the data.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Appalachia storage hub prospects map by FracTracker

Storing Natural Gas Liquids in Appalachia

Last month, the Department of Energy (DOE) submitted a report titled Ethane Storage and Distribution Hub in the United States to Congress. The report sums up several other recent geologic studies and economic analyses that evaluate the potential to create a large petrochemical hub in southwest Pennsylvania, Ohio, West Virginia, and northeastern Kentucky.

Most people call this region Appalachia because of the mountains, or the Ohio River Valley because of the namesake river. The petrochemical industry looks deeper: they’ve branded it Shale Crescent USA, after the shale gas thousands of feet underground. This article summarizes recent developments on storing natural gas liquids, including ethane, in this region – whatever you prefer to call it.

Background

The United States currently produces more natural gas than any other country in the world, with much of the fracked gas coming from the Marcellus and Utica shales in Appalachia. The DOE report predicts that production in this region will continue growing from an estimated at 8.19 trillion cubic feet (Tcf) in 2017, to 13.55 Tcf in 2025 and 19.5 Tcf in 2050.

Natural Gas Production Estimates:

8.19 Tcf in 2017
13.55 Tcf in 2025
19.5 Tcf in 2050

In addition to oil and gas, fracking produces natural gas liquids (NGLs), such as ethane, propane, and butane. NGLs are a key component of the petrochemical industry, which takes these resources and converts them into plastics and resins. As industry extracts more natural gas, it will also be left with more NGLs to manage.

Hoping to profit off NGLs, the oil and gas industry is investing in petrochemical production. In the Appalachian basin, the DOE predicts that production of ethylene from ethane will reach 640,000 barrels a day by 2025 (this is 20 times the amount the region produced in 2013). The Gulf Coast of the U.S., as well as countries in Asia and the Middle East, are also growing their production capacities. Globally, ethylene production is projected to grow 31% from 2017 to 2025.

The rise of the petrochemical industry is coming at a point when there’s an increasing global awareness of the disaster that is plastic pollution. As much as 12.7 million tons of plastic waste goes into the ocean each year, affecting over 700 species of marine animals. On land, plastic waste is often shipped to less developed nations, where it ends up polluting poor communities and contaminating their drinking water and air.

Nevertheless, politicians in PA, OH, and WV are working hard to attract petrochemical build-out in Appalachia. The region already houses much of the infrastructure needed for a petrochemical hub, such as fracked wells that pump out NGLs and processing plants to separate these liquids from the rest of the natural gas stream. One thing it’s missing, however, is significant capacity to store natural gas liquids – particularly ethane.

Why does industry need storage?

Ethane storage offers several benefits to the petrochemical industry. For one, it would serve as a steady supply of ethane for plants like ethane crackers, which “crack” ethane into ethylene to make polyethylene plastic. With this constant supply (transported to crackers via pipeline), plants can operate 24 hours a day, year round, and avoid using energy to shutdown and restart. Storage also allows industry to adapt to fluctuations in demand. If demand decreases, ethane can be set aside instead of being burned off when a natural gas stream is processed.

Another argument for expanding petrochemical activity in Appalachia is to diversify the industry’s geography. The current petrochemical hub in Texas and Louisiana (where over 95% of the country’s ethylene production takes place) is subject to extreme weather events. In 2017, Hurricane Harvey caused over half of the nation’s polyethylene production capacity to shut down. The report mentions “extreme weather events” multiple times as justification for building a petrochemical hub in Appalachia. This stance strongly suggests that the DOE is preparing for increased hurricanes and flooding from climate change, although this is never explicitly stated. Unsurprisingly, the industry’s role in causing climate change is left out from the report as well.

What does storage look like?

While the term ‘natural gas liquid’ may seem like an oxymoron, it refers to the different forms the substances take depending on temperature and pressure. At normal conditions, NGLs are a gas, but when pressurized or exposed to extremely cold temperatures,  they act as a liquid. NGLs occupy significantly less space as a liquid, and are therefore moved and stored as a pressurized or refrigerated liquid.

Storage can be in above ground tanks, but is often underground in gas fields or underground caverns. NGLs are highly volatile, and storing them above ground puts workers and surrounding communities at risk. For example – last week, an above ground storage tank exploded at a natural gas processing plant in Washington County, PA, sending four people to the hospital. While underground storage is often perceived as “safer,” it still poses significant risks, particularly in a geography like Appalachia full of wells, coal mines, and pipelines. This underground infrastructure can cause NGLs to leak during storage or the land above them to collapse.

A study out of West Virginia University, titled “A Geologic Study to Determine the Potential to Create an Appalachian Storage Hub For Natural Gas Liquids,” identified three different types of storage opportunities along the Ohio and Kanawha river valleys:

Underground storage options

  1. Mined-rock cavern: Companies can mine caverns in formations of limestone, dolomite, or sandstone. The formation must be at least 40 feet thick to hold NGLs. This study focused on formations of the Greenbrier Limestone, which occurs throughout southwestern Pennsylvania, West Virginia, and Kentucky.
  2. Salt cavern: Developing salt caverns involves injecting water underground to create a void, and then pumping NGLs into the cavern. Suitable salt caverns have “walls” at least 100 feet thick above and below the cavern. The study recommended salt caverns 1,500 to 3,000 feet deep, but considered those as deep as 6,700 feet.
  3. Gas field: NGLs can also be stored in natural gas fields or depleted gas fields in underground sandstone reservoirs. Suitable gas fields are 2,000 feet deep or more according to the WVU study.

Where could storage sites be located?

The West Virginia University study identified and ranked thousands of gas fields, several salt caverns, and many regions in the Greenbrier Limestone that could serve as NGL storage. Most of the top-ranked opportunities are in West Virginia, near the state’s borders with Ohio and Pennsylvania, and several cross beneath the Ohio or Kanawha rivers. The researchers conclude with three “prospects,” which are circled in Figure 1.

A map of storing natural gas liquids opportunities in the Ohio River Valley

Figure 1. NGL storage opportunities identified by the Appalachian Oil and Natural Gas Consortium at West Virginia University

The table below lists the specific storage opportunities in each prospect, as well as the available data on depth, thickness, and acreage of the formations. Also listed are the counties that the storage facility would cross into.

Name Type Depth (feet) Thickness (feet) Counties Land Size (acres)
Salina F4 Salt cavern Salt cavern >100 to 150 Primarily Columbiana, OH, also Hancock, WV & Beaver, PA 83,775
Salina F4 salt cavern Salt cavern 100 to 150 Primarily Jefferson, OH, also Brooke & Hancock WV, & Washington, PA 129,017
Ravenna-Best Consolidated Field Depleted gas field 4,107 to 6,497 25 to 156 Mahoning, OH 69,000
No specific field was ranked Gas field in Oriskany sandstone 3,000 to 7,000 0 to 70+ Throughout the prospect

Existing NGL Storage

Storage in the United States

Currently, the U.S. has two major NGL storage hubs (both in salt caverns): One is in Mont Belvieu, Texas and the other in Conway, Kansas. These facilities are strategically located near the petrochemical industry’s hub along the Gulf Coast. There is also underground storage in Sarnia, Ontario.

Industry in Appalachia is connected to these storage facilities via pipelines, including Sunoco’s Mariner West that transports ethane to Sarnia, and the Appalachia-Texas-Express (ATEX) pipeline that takes ethane to Mont Belvieu. However, as suggested above, NGL storage in Appalachia is also under development.

Appalachia Storage & Trading Hub

Appalachia Development Group LLC is heading the development of the Appalachia Storage & Trading Hub initiative. The company has not announced the specific location for underground storage, but has been working hard to secure the funds  for this development.

In September of 2017, Appalachia Development Group submitted part 1 of a 2-part application for a $1.9 billion loan to the US DOE Loan Program Office. The DOE approved the application the following January, inviting the company to submit the second part, which is currently pending. This second part goes through the DOE’s Title XVII innovative clean energy projects loan program.

According to the DOE, this program “provides loan guarantees to accelerate the deployment of innovative clean energy technology.” Paradoxically, this means the DOE may give clean energy funds to the petrochemical industry, which is fueled by fossil fuels and does not provide energy but rather plastic and resins.

Steven Hedrick, the CEO of Appalachia Development Group, was part of a West Virginia trade delegation that traveled to China in 2017 to meet with China’s largest energy company. This meeting, which included President Trump and China’s President Xi Jinping, resulted in China Energy agreeing to invest $83.7 billion to support natural gas and petrochemical development in West Virginia. (Of note: This agreement has faced uncertainty following Trump’s tariffs on Chinese goods). West Virginia Governor Jim Justice later criticized Hedrick’s involvement in the meeting, where he promoted the interests of his private company.

Mountaineer NGL Storage Project

Another company, Energy Storage Ventures LLC, has plans to construct NGL storage near Clarington, Ohio. This facility would be on land formerly belonging to Quarto Mining Company’s Powhatan Mine No. 4. Called “Mountaineer NGL Storage,” the project would develop salt caverns to store propane, ethane, and butane. Each cavern could store 500,000 barrels (21 million gallons) of NGLs.

The video below, made by the Energy Storage Ventures, describes the process of developing salt caverns for storage.

The Mountaineer NGL Storage Project location is about 12 miles south of the PTTGC ethane cracker (if built), in Dilles Bottom Ohio. It’s also roughly 60 miles south of the Shell ethane cracker (under construction) in Potter Township, PA. If developed, the project could supply these plants with ethane and allow them to continuously operate. According to Energy Storage Ventures President, David Hooker, the project would also trigger $500 million in new pipelines in the region and $1 billion in fractionation facilities to separate NGLs.

Energy Storage Ventures wants to build three pipelines beneath the Ohio River. Two pipelines (one for ethane and one for propane and butane) would deliver NGLs to the storage site from Blue Racer Natrium, a fractionation plant that separates dry natural gas from NGLs. A third pipeline would take salt brine water from the caverns to the Marshall County chlorine plant (currently owned by Westlake Chemical Corp). These facilities, as well as the locations of the two ethane crackers storage could serve, are in the map below. This map also includes the potential storage opportunities the researchers at West Virginia University identified.



View map full screen | How FracTracker maps work

Referring to concerns about building pipelines and caverns near the Ohio River, a drinking water source for 5 million people, the company’s president David Hooker stated, “This is not rocket science. These things have operated safely for years… Salt, at depth, is impermeable. You won’t see any migration out of the salt.”

This video is a rendering of what the 200-acre site will look like, including the salt water impoundment structure (capable of holding 3.25 million barrels), and the infrastructure needed to deliver products and equipment by rail and truck:

The company has stated that it owns both the land and mineral rights it needs to develop the caverns, but the project has also faced delays.

Where is this plastic going?

One common argument for a petrochemical hub in Appalachia is the region’s proximity to the downstream sector of petrochemical industry. Manufacturers such as PPG Industries, Dow Chemical Inc., and BASF are all based in the area and could make use of the feedstock from an Appalachian hub.

However, the report doesn’t make it clear where the plastic and resin end products will land. It does state that the demand in the United States isn’t enough to swallow up two major petrochemical hubs worth of plastic.

Export markets

The DOE report states that, “the development of new petrochemical capacity in Appalachia is not necessarily in conflict with Gulf Coast expansion.” Since the Gulf Coast already has the infrastructure for export, it could focus on international markets while Appalachia meets domestic demand. Alternatively, the Appalachian hub could serve European destinations while the Gulf Coast hub delivers to Pacific Basin and South American destinations. Plastic consumption is highly correlated with population, so countries with large, growing populations such as India and China are likely markets.

It’s important to note that the U.S. isn’t the only country increasing its production of petrochemical derivatives, and as the report notes, exports from the US “may face a challenge from global capacity surplus.” Figure 2 shows that global production of ethylene is expected to surpass global consumption, shown in Figure 3. The graph of consumption likely ignores the impact of plastic-reducing policies that hundreds of countries and cities are implementing. As such, it may be an over-estimation.

Historical and Projected Ethylene Production Capacity by Global Area

Figure 2. Historical and future ethylene production by global region. Source

Graph of ethylene consumption by global area.

Figure 3. Ethylene consumption by global region. Source

In the end, it appears that the industry’s plan is to build first, and worry about markets later, hoping that a growing supply of affordable plastic will increase consumption.

Perhaps the reason industry is so eager to forge a market is because oil and gas is struggling with a lot of debt. A study out of the Sightline Institute found that as of the first half of 2018, “US fracking-focused oil and gas companies continued their eight-year cash flow losing streak.”  The Center for International Environmental Law found that petrochemicals generally have a larger profit margin than oil and gas: “In 2015, ExxonMobil’s Chemicals segment accounted for roughly 10% of its revenues but more than 25% of its overall profits.”

Plastic is one way to subsidize this dying industry…

Beyond Storing Natural Gas Liquids

The motive behind developing storage is to catalyze and support a major industry. The DOE report states that the new infrastructure required “would include gathering lines, processing plants, fractionation facilities, NGLs storage facilities, ethane crackers, and then…plants for polyethylene, ethylene dichloride, ethylene oxide, and other infrastructure.” A hub would require more fracking and wastewater injection wells, cause even more heavy truck traffic that adds stress to roadways, and require additional power plant capacity to serve its electricity demand.

In other words, an Appalachia petrochemical hub would profoundly impact the region. The report contains an in-depth analysis of the economic impacts, but fails to mention any environmental concerns, social impacts on communities, or health effects. The other major studies on this buildout,  mentioned above, follow a similar pattern.

A quick look at industry along the Gulf Coast tells you that environmental, social, and health concerns are very real and produce their own economic debts. The petrochemical industry has created a “cancer alley” in Texas and Louisiana, disproportionately impacting low-income and minority communities. Yet, industry is preparing another hub without a single comprehensive environmental impact assessment or health assessment for the region. As each pipeline, fracked well, and plant is permitted separately, we can’t properly assess the cumulative negative impacts this development will have on our waterways, forests, soil, or air quality. Therefore, we also won’t know how it will affect our health.

Looking into the future

The report analyzes the industry through 2050. It states that NGL output in Appalachia:

… will continue to grow throughout the forecast period. As natural gas production gradually migrates away from liquids-rich gas areas, which are expected to slowly deplete, to dryer areas, the rate of growth in NGPL production will slow relative to the rate of natural gas production growth.

In 31 years, the kids growing up in Appalachia right now could be left with brownfields, dried-up wells, and abandoned ethane crackers. But it doesn’t have to be this way. Last year, the DOE reported that there are more jobs in clean energy, energy efficiency, and alternative vehicles than in fossil fuels. By using funds such as the DOE’s Title XVII innovative clean energy loan – for actual clean energy – we can bring economic development to the region that will be relevant past 2050 and that won’t sacrifice our health and natural resources for short-term private gains.

By Erica Jackson, Community Outreach and Communications Specialist

Map of pipeline incidents across the US

Pipeline Incidents Continue to Impact Residents

Pipelines play a major role in the oil and gas extraction industry, allowing for the transport of hydrocarbons from well sites to a variety of infrastructure, including processing plants, petrochemical facilities, power generation plants, and ultimately consumers. There are more than 2.7 million miles of natural gas and hazardous liquid pipelines in the United States, or more than 11 times the distance from Earth to the moon.

With all of this infrastructure in place, pipelines are inevitably routed close to homes, schools, and other culturally or ecologically important locations. But how safe are pipelines, really? While they are typically buried underground and out of sight, many residents are concerned about the constant passage of volatile materials through these pipes in close proximity to these areas, with persistent but often unstated possibility that something might go wrong some day.

Safety talking points

In an attempt to assuage these fears, industry representatives and regulators tend to throw around variants of the word “safe” quite a bit:

Pipelines are the safest and most reliable means of transporting the nation’s energy products.
— Keith Coyle, Marcellus Shale Coalition

Although pipelines exist in all fifty states, most of us are unaware that this vast network even exists. This is due to the strong safety record of pipelines and the fact that most of them are located underground. Installing pipelines underground protects them from damage and helps protect our communities as well.
— Pipeline and Hazardous Materials Safety Administration (PHMSA)

Pipelines are an extremely safe way to transport energy across the country.
Pipeline 101

Knowing how important pipelines are to everyday living is a big reason why we as pipeline operators strive to keep them safe. Pipelines themselves are one of the safest ways to transport energy with a barrel of crude oil or petroleum product reaching its destination safely by pipeline 99.999% of the time.
American Petroleum Institute

But are pipelines really safe?

Given these talking points, the general public can be excused for being under the impression that pipelines are no big deal. However, PHMSA keeps records on pipeline incidents in the US, and the cumulative impact of these events is staggering. These incidents are broken into three separate reports:

  1. Gas Distribution (lines that take gas to residents and other consumers),
  2. Gas Transmission & Gathering (collectively bringing gas from well sites to processing facilities and distant markets), and
  3. Hazardous Liquids (including crude oil, refined petroleum products, and natural gas liquids).

Below in Table 1 is a summary of pipeline incident data from 2010 through mid-November of this year. Of note: Some details from recent events are still pending, and are therefore not yet reflected in these reports.

Table 1: Summary of pipeline incidents from 1/1/2010 through 11/14/2018

Report Incidents Injuries Fatalities Evacuees Fires Explosions Damages ($)
Gas Distribution 934 473 92 18,467 576 226 381,705,567
Gas Transmission & Gathering 1,069 99 24 8,614 121 51 1,107,988,837
Hazardous Liquids 3,509 24 10 2,471 111 14 2,606,014,109
Totals 5,512 596 126 29,552 808 291 4,095,708,513

Based on this data, on average each day in the US 1.7 pipeline incidents are reported (a number in line with our previous analyses), requiring 9 people to be evacuated, and causing almost $1.3 million in property damage. A pipeline catches fire every 4 days and results in an explosion every 11 days. These incidents result in an injury every 5 days, on average, and a fatality every 26 days.

Data shortcomings

While the PHMSA datasets are extremely thorough, they do have some limitations. Unfortunately, in some cases, these limitations tend to minimize our understanding of the true impacts. A notable recent example is a series of explosions and fires on September 13, 2018 in the towns of Lawrence, Andover, and North Andover, in the Merrimack Valley region of Massachusetts. Cumulatively, these incidents resulted in the death of a young man and the injuries to 25 other people. There were 60-80 structure fires, according to early reports, as gas distribution lines became over-pressurized.

The preliminary PHMSA report lists all of these Massachusetts fires as a single event, so it is counted as one fire and one explosion in Table 1. As of the November 14 download of the data, property damage has not been calculated, and is listed as $0. The number of evacuees in the report also stands at zero. This serves as a reminder that analysis of the oil and gas industry can only be as good as the available data, and relying on operators to accurately self-report the full extent of the impacts is a somewhat dubious practice.



View map fullscreen | How FracTracker maps work
This map shows pipeline incidents in the US from 1/1/2010 through 11/14/2018. Source: PHMSA. One record without coordinates was discarded, and 10 records had missing decimal points or negative (-) signs added to the longitude values. A few obvious errors remain, such as a 2012 incident near Winnipeg that should be in Texas, but we are not in a position to guess at the correct latitude and longitude values for each of the 5,512 incidents.

Another recent incident occurred in Center Township, a small community in Beaver County, Pennsylvania near Aliquippa on September 10, 2018. According to the PHMSA Gas Transmission & Gathering report, this incident on the brand new Revolution gathering line caused over $7 million in damage, destroying a house and multiple vehicles, and required 49 people to evacuate. The incident was indicated as a fire, but not an explosion. However, reporting by local media station WPXI quoted this description from a neighbor:

A major explosion, I thought it was a plane crash honestly. My wife and I jumped out of bed and it was just like a light. It looked like daylight. It was a ball of flame like I’ve never seen before.

From the standpoint of the data, this error is not particularly egregious. On the other hand, it does serve to falsely represent the overall safety of the system, at least if we consider explosions to be more hazardous than fires.

Big picture findings

Comparing the three reports against one another, we can see that the majority of incidents (64%) and damages (also 64%) are caused by hazardous liquids pipelines, even though the liquids account for less than 8% of the total mileage of the network. In all of the other categories, however, gas distribution lines account for more than half of the cumulative damage, including injuries (79%), deaths (73%), evacuees (62%), fires (71%), and explosions (78%). This is perhaps due to the vast network (more than 2.2 million miles) of gas distribution mains and service lines, as well as their nature of taking these hazardous products directly into populated areas. Comparatively, transmission and hazardous liquids lines ostensibly attempt to avoid those locations.

Is the age of the pipeline a factor in incidents?

Among the available attributes in the incident datasets is a field indicating the year the pipeline was installed. While this data point is not always completed, there is enough of a sample size to look for trends in the data. We determined the age of the pipe by subtracting the year the pipe was installed from the year of the incident, eliminating nonsensical values that were created when the pipeline age was not provided. In the following section, we will look at two tables for each of the three reports. The first table shows the cause of the failure compared to the average age, and the second breaks down results by the content that the pipe was carrying. We’ll also include a histogram of the pipe age, so we can get a sense of how representative the average age actually is within the sample.

A. Gas distribution

Each table shows some fluctuation in the average age of pipeline incidents depending on other variables, although the variation in the product contained in the pipe (Table 3) are minor, and may be due to relatively small sample sizes in some of the categories. When examining the nature of the failure in relation to the age of the pipe (Table 2), it does make sense that incidents involving corrosion would be more likely to afflict older pipelines, (although again, the number of incidents in this category is relatively small). On average, distribution pipeline incidents occur on pipes that are 33 years old.

When we look at the histogram (Figure 1) for the overall distribution of the age of the pipeline, we see that those in the first bin, representing routes under 10 years of age, are actually the most frequent. In fact, the overall trend, excepting those in the 40 t0 50 year old bin, is that the older the pipeline, the fewer the number of incidents. This may reflect the massive scale of pipeline construction in recent decades, or perhaps pipeline safety protocol has regressed over time.

Pipeline incidents charting

Figure 1. Age of pipeline histogram for gas distribution line incidents between 1/1/2010 and 11/14/2018. Incidents where the age of the pipe is unknown are excluded.

B. Gas Transmission & Gathering

Transmission & Gathering line incidents occur on pipelines routes that are, on average, five years older than their distribution counterparts. Corrosion, natural force damage, and material failures on pipes and welds occur on pipelines with an average age above the overall mean, while excavation and “other outside force” incidents tend to occur on newer pipes (Table 4). The latter category would include things like being struck by vehicles, damaged in wildfires, or vandalism. The contents of the pipe does not seem to have any significant correlation with the age of the pipe when we take sample size into consideration (Table 5).

The histogram (Figure 2) for the age of pipes on transmission & gathering line incidents below shows a more normal distribution, with the noticeable exception of the first bin (0 to 10 years old) ranking second in frequency to the fifth bin (40 to 50 years old).

It is worth mentioning that, “PHMSA estimates that only about 5% of gas gathering pipelines are currently subject to PHMSA pipeline safety regulations.” My correspondence with the agency verified that the remainder is not factored into their pipeline mileage or incident reports in any fashion. Therefore, we should not consider the PHMSA data to completely represent the extent of the gathering line network or incidents that occur on those routes.

Pipeline incidents chart

Figure 2. Age of pipeline histogram for transmission & gathering line incidents between 1/1/2010 and 11/14/2018. Incidents where the age of the pipe is unknown are excluded.

C. Hazardous Liquids

The average incident on hazardous liquid lines occurs on pipelines that are 27 years old, which is 6 years younger than for distribution incidents, and 11 years younger than their transmission & gathering counterparts. This appears to be heavily skewed by the equipment failure and incorrect operation categories, both of which occur on pipes averaging 15 years old, and both with substantial numbers of incidents. On the other hand, excavation damage, corrosion, and material/weld failures tend to occur on pipes that are at least 40 years old (Table 6).

In terms of content, pipelines carrying carbon dioxide happen on pipes that average just 11 years old, although there are not enough of these incidents to account for the overall departure from the other two datasets (Table 7).

The overall shape of the histogram (Figure 3) is similar to that of transmission & gathering line incidents, except that the first bin (0 to 10 years old) is by far the most frequent, with more than 3 and a half times as many incidents as the next closest bin (4o to 50 years old). Operators of new hazardous liquid routes are failing at an alarming rate. In descending order, these incidents are blamed on equipment failure (61%), incorrect operation (21%), and corrosion (7%), followed by smaller amounts in other categories. The data indicate that pipelines installed in previous decades were not subject to this degree of failure.

Pipeline incidents charting

Figure 3. Age of pipeline histogram for hazardous liquid line incidents between 1/1/2010 and 11/14/2018. Incidents where the age of the pipe is unknown are excluded.

Conclusions

When evaluating quotes, like those listed above, that portray pipelines as a safe way of transporting hydrocarbons, it’s worth taking a closer look at what they are saying.

Are pipelines the safest way of transporting our nation’s energy products? This presupposes that our energy must be met with liquid or gaseous fossil fuels. Certainly, crude shipments by rail and other modes of transport are also concerning, but movements of solar panels and wind turbines are far less risky.

Does the industry have the “strong safety record” that PHMSA proclaims? Here, we have to grapple with the fact that the word “safety” is inherently subjective, and the agency’s own data could certainly argue that the industry is falling short of reasonable safety benchmarks.

And what about the claim that barrels of oil or petroleum products reach their destination “99.999% of the time? First, it’s worth noting that this claim excludes gas pipelines, which account for 92% of the pipelines, even before considering that PHMSA only has records on about 5% of gas gathering lines in their pipeline mileage calculations. But more to the point, while a 99.999% success rate sounds fantastic, in this context, it isn’t good enough, as this means that one barrel in every 100,000 will spill.

For example, the Dakota Access Pipeline has a daily capacity of 470,000 barrels per day (bpd). In an average year, we can expect 1,715 barrels (72,030 gallons) to fail to reach its destination, and indeed, there are numerous spills reported in the course of routine operation on the route. The 590,000 bpd Keystone pipeline leaked 9,700 barrels (407,400 gallons) late last year in South Dakota, or what we might expect from four and a half years of normal operation, given the o.001% failure rate. In all, PHMSA’s hazardous liquid report lists 712,763 barrels (29.9 million gallons) were unintentionally released, while an additional 328,074 barrels (13.8 million gallons) were intentionally released in this time period. Of this, 284,887 barrels (12 million gallons) were recovered, meaning 755,950 barrels (31.7 million gallons) were not.

Beyond that, we must wonder whether the recent spate of pipeline incidents in new routes is a trend that can be corrected. Between the three reports, 1,283 out of the 3,853 (32%) incidents occurred in pipelines that were 10 years old or younger (where the year the pipeline’s age is known). A large number of these incidents are unforced errors, due to poor quality equipment or operator error.

One wonders why regulators are allowing such shoddy workmanship to repeatedly occur on their watch.


By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

Thomas Fire Photo by Marcus Yam, LA Times

California’s Oil Fields Add Fuel to the Fire

Never has the saying “adding fuel to the fire” been so literal.

California wildfires have been growing at unheard of rates over the last five years, causing record breaking destruction and loss of life. Now that we’ve had a little rain and perhaps a reprieve from this nightmare wildfire season, it is important to consider the factors influencing the risk and severity of fires across the state.

Oil and gas extraction and consumption are major contributors to climate change, the underlying factor in the recent frequent and intense wildfires. A lesser-known fact, however, is that many wildfires have actually burned in oil fields in California – a dangerous circumstance that also accelerates greenhouse gas emissions. Our analysis shows where this situation has occurred, as well as the oil fields most likely to be burned in the future.

First, we looked at where wildfires are currently burning across the state, shown below in Map 1. This map is from CAL FIRE and is continuously updated.

Map 1. The CAL FIRE 2018 Statewide Incidents Map

CAL FIRE map showing the locations and perimeters of California wildfires

California’s recent fire seasons

The two largest wildfires in California recorded history occurred last year. The Mendocino Complex Fire burned almost a half million acres (1,857 square kilometers) in Mendocino National Forest. The Thomas Fire in the southern California counties of Ventura and Santa Barbara burned nearly 282,000 acres (1,140 square kilometers). A brutal 2017 fire season, however is now overshadowed by the ravages of 2018’s fires.

With the effects of climate change increasing the severity of California’s multi-year drought, each fire season seems to get worse. The Woolsey Fire in Southern California caused a record amount of property damage in the hills of Santa Monica and Ventura County. The Camp Fire in the historical mining town of Paradise resulted in a death toll that, as of early December, has more than tripled any other wildfire. And many people are still missing.

The Thomas Fire

A most precarious situation erupts when a wildfire spreads to an oil field. Besides having a surplus of their super flammable namesake liquid, oil fields are also storage sites for various other hazardous and volatile chemicals. The Thomas Fire was such a scenario.

The Thomas fire burned through the steep foothills of the coastal Los Padres mountains into the oil fields. When in the oil fields, the oil pumped to the surface for production and the stores of flammable chemicals provided explosive fuel to the wildfire. While firefighters were able to get the majority of the fire “contained,” the oil fields were too dangerous to access. According to the community, oil fires remained burning for weeks before they were able to be extinguished.

The Ventura office of the Division of Oil Gas and Geothermal Resources (DOGGR) reported that the Thomas Fire burned through the Taylor Ranch oil fields and a half dozen other oil fields including the Ventura, San Miguelito, Rincon, Ojai, Timbe Canyon, Newhall-Portrero, Honor Rancho and Wayside Canyon. DOGGR Ventura officials said Newhall-Potrero was “half burned over.” Thomas also burned within a 1/3 mile of the Sespe oil field. Schools and other institutions closed down throughout the Los Angeles Basin, but DOGGR said there was no impact on oil and gas operations that far south. The fire spurred an evacuation of the Las Flores Canyon Exxon oil storage facility but thankfully was contained before reaching the facility.

Wildfire threat for oil fields

Map 2. California Wildfires in Oil Fields

View map fullscreen | How FracTracker maps work

The Thomas Fire was not the first time or the last time an oil field burned in a California wildfire. Map 2 above shows state wildfires from the last 20 years overlaid with maps of California oil fields, oil wells, and high threat wildfire zones. The map shows just the oil fields and oil and gas wells in California that have been burned by a wildfire.

We found that 160 of California’s 517 oil fields (31%) have been burned by encroaching wildfires, affecting more than 10,000 oil and gas well heads.

An ominous finding: the state’s highest threat zones for wildfires are located close to and within oil and gas fields.

The map shows that wildfire risk is greatest in Southern California in Ventura and Los Angeles counties due to the arid environment and high population density. Over half the oil fields that have burned in California are in this small region.

Who is at fault?

Reports show that climate change has become the greatest factor in creating the types of conditions conducive to uncontrollable wildfires in California. Climate scientists explain that climate change has altered the natural path of the Pacific jet stream, the high-altitude winds that bring precipitation from the South Pacific to North America.

In a recent study, researchers from the University of Idaho and Columbia University found that the impact of global warming is growing exponentially. Their analysis shows that since 2000, human-caused climate change prompted 75% more aridity — causing peak fire season to expand every year by an average of nine days. The Fourth National Climate Assessment details the relationship between climate change and wildfire prevalence, and comes to the same conclusion: impacts are increasing.

On the cause of wildfires, the report explains:

Compound extremes can include simultaneous heat and drought such as during the 2011–2017 California drought, when 2014, 2015, and 2016 were also the warmest years on record for the state; conditions conducive to the very large wildfires, that have already increased in frequency across the western United States and Alaska since the 1980s.

Both 2017 and 2018 have continued the trend of warmest years on record, and so California’s drought has only gotten worse. The report goes on to discuss the threat climate change poses to the degradation of utilities’ infrastructure. Stress from climate change-induced heat and drought will require more resources dedicated to maintaining utility infrastructure.

The role of public utilities

The timing of this report could not be more ironic considering the role that utilities have played in starting wildfires in California. Incidents such as transformer explosions and the degradation of power line infrastructure have been implicated as the causes of multiple recent wildfires, including the Thomas Fire and the most recent Woolsey and Camp wildfires – three of the most devastating wildfires in state history. As public traded corporations, these utilities have investors that profit from their contribution to climate change which, in turn, has created the current conditions that allow these massive wildfires to spread. On the other hand, utilities in California may be the least reliant on fossil fuels. Southern California Edison allows customers to pay a surcharge for 100% renewable service, and Pacific Gas and Electric sources just 20% of their electricity from natural gas.

As a result of the fire cases, each of which might be attributed to negligence, stock prices for the two utilities plummeted but eventually rebounded after the California Public Utilities Commission (CPUC) assured investors that the utilities would be “bailed out” in the case of a possible financial failure to the reproach of the general public. The CPUC assured that the state could bail out utilities if they were forced to finance recovery for the fires they may have caused.

CPUC President, Michael Picker, stated:

The CPUC is one of the government agencies tasked with ensuring that investor-owned utilities operate a safe and reliable grid… An essential component of providing safe electrical service is the financial wherewithal to carry out safety measures.

Along with regulation and oversight, part of the agency’s work involves ensuring utilities are financially solvent enough to carry out safety measures.

Conclusion

January 1, 2019 will mark the seventh year of drought in California. Each fall brings anxiety and dread for state residents, particularly those that live in the driest, most arid forests and chaparral zones. Data show that the wildfires continue to increase in terms of intensity and frequency as the state goes deeper into drought induced by climate change.

While California firefighters have been incredibly resourceful, over 70% of California forest land is managed by the federal government whose 2019 USDA Forest Service budget reduces overall funding for the National Forest System by more than $170 million. Moving forward, more resources must be invested in supporting the health of forests to prevent fires with an ecological approach, rather than the current strategy which has focused predominantly on the unsustainable practice of fuel reduction and the risky tactics of “fire borrowing”. And of course, the most important piece of the puzzle will be addressing climate change.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Feature image by Marcus Yam, LA Times

PTTGC’s Ethane Cracker Project - Map by FracTracker Alliance

PTTGC’s Ethane Cracker Project: Risks of Bringing Plastic Manufacturing to Ohio

In 2012, a battle between Ohio, West Virginia, and Pennsylvania was underway. Politicians and businesses from each state were eagerly campaigning for the opportunity to host Royal Dutch Shell’s “world-class” petrochemical facility. The facility in question was an ethane cracker, the first of its kind to be built outside of the Gulf Coast in 20 years. In the end, Pennsylvania’s record-breaking tax incentive package won Shell over, and construction on the ethane cracker plant began in 2017.

Once completed, the ethane cracker will convert ethane from fracked wells into 1.6 million tons of polyethylene plastic pellets per year.

Shell Ethane Cracker

Shell’s ethane cracker, under construction in Beaver County, PA. Image by Ted Auch, FracTracker.
Aerial support provided by LightHawk.

Ohio and West Virginia, however, have not been left out of the petrochemical game. In addition to the NGL pipelines, cryogenic plants, and fractionation facilities in these states, plans for ethane cracker projects are also in the works.

In 2017, PTT Global Chemical (PTTGC) put Ohio in second place in the “race to build an ethane cracker,” when it decided to build a plant in Belmont County, Ohio.

But first, why is the petrochemical industry expanding in the Ohio River Valley?

Fracking has opened up huge volumes of natural gas in the Marcellus and Utica shales in Pennsylvania, Ohio, and West Virginia. Fracked wells in these states extract methane, which is then transported in pipelines and used as a residential, industrial, or commercial energy source. The gas in this region, however, contains more than just methane. Classified as “wet gas,” the natural gas stream from regional wells also contains natural gas liquids (NGLs). These NGLs include propane, ethane, and butane, and industry is eager to create a market for them.

Investing in plastic is one way for the industry to subsidize the natural gas production, an increasingly unprofitable enterprise. 

An image of plastic pellets

Plastic pellets, also called “nurdles,” the end product of ethane crackers.

Major processing facilities, such as cryogenic and fractionation plants, receive natural gas streams and separate the NGLs, such as ethane, from the methane. After ethane is separated, it can be “cracked” into ethylene, and converted to polyethylene, the most common type of plastic. The plastic is shipped in pellet form to manufacturers in the U.S. and abroad, where it is made into a variety of plastic products.

By building ethane crackers in the Ohio River Valley, industry is taking advantage of the region’s vast underground resources.

PTTGC ethane cracker: The facts

PTTGC’s website states that the company “is Thailand’s largest and Asia’s leading integrated petrochemical and refining company.” While this ethane cracker has been years in the making, the company states that “a final investment decision has not been made.” The image below shows land that PTTGC has purchased for the plant, totaling roughly 500 acres, in Dilles Bottom, Mead Township.

According to the Ohio EPA, the plant will turn ethylene into:Recycling "2" symbol for HDPE plastic

  • 700,000 tons of high density polyethylene (HDPE) per year
  • 900,000 tons Linear low-density polyethylene (LLDPE)

HDPE is a common type of plastic, used in many products such as bags, bottles, or crates. Look for it on containers with a “2” in the recycling triangle. LLDPE is another common type of plastic that’s weaker and more flexible; it’s marked with a “4.”

The ethane cracker complex will contain:

  • An ethylene plant
  • Four ethylene-based derivatives plants.
  • Six 552 MMBtu/hour cracking furnaces fueled by natural gas and tail gas with ethane backup
  • Three 400 MMBTU/hr steam boilers fueled by natural gas and ethane
  • A primary and backup 6.2 MMBtu/hour thermal oxidizer
  • A high pressure ground flare (1.8 MMBtu/hour)
  • A low pressure ground flare (0.78 MMBtu/hour)
  • Wastewater treatment systems
  • Equipment to capture fugitive emissions
  • Railcars for pygas (liquid product) and HDPE and LLDPE pellets
  • Emergency firewater pumps
  • Emergency diesel-fired generator engines
  • A cooling tower

Impacts on air quality

The plant received water permits last year, and air permits are currently under review. On November 29, 2018, the Ohio EPA held an information session and hearing for a draft air permit (the permit can be viewed here, by entering permit number P0124972).

FracTracker has previously reported on the air quality impacts, risks, and fragmented permitting process associated with the Shell ethane cracker in Pennsylvania. How does the PTTGC plant stack up?

The plant will be built in the community of Dilles Bottom, on the former property of FirstEnergy’s R.E. Burger Power Station, a coal power plant that shut down in 2011. The site was demolished in 2016 in preparation for PTTGC’s ethane cracker. In 2018, PTTGC also purchased property from Ohio-West Virginia Excavating Company. In total, the ethane cracker will occupy 500 acres.

R.E. Burger Power Station

R.E. Burger Power Station, which has been demolished for the PTTGC Ethane Cracker. Image Source

Table 1, below, is a comparison of the previous major source of air pollution source, the R.E. Burger Power Station, and predictions of the future emissions from the PTTGC ethane cracker. The far right column shows what percent of the former emissions the ethane cracker will release.

Table 1: Former and Future Air Emissions in Dilles Bottom, Ohio

Pollutant R.E.Burger Power Station
(2010 emissions)

PTTGC Ethane Cracker
(predicted emissions)

Percent of former emissions

CO (carbon monoxide) 143.33 544 379.5%
NOx (nitrogen oxides) 1861.2 164 8.81%
SO2 (sulfur dioxide) 12719 23 0.18%
PM10 (particulate matter, 10) 179.25 89 49.65%
PM2.5 (particulate matter, 2.5) 77.62 86 110.8%
VOCs (volatile organic compounds) 0.15 396 264000%

As you can see, the ethane cracker will emit substantially less sulfur dioxide and nitrogen dioxides compared with the R.E. Burger site. This makes sense, as these two pollutants are associated with burning coal. On the flip side, the ethane cracker will emit almost four times as much carbon monoxide and 263,900% more volatile organic compounds (percentages bolded in Table 1, above).

In addition to these pollutants, the ethane cracker will emit 38 tons per year of Hazardous Air Pollutants (HAPS), a group of pollutants that includes benzene, chlorine, and ethyl chloride. These pollutants are characterized by the EPA as being “known or suspected to cause cancer or other serious health effects, such as reproductive effects or birth defects, or adverse environmental effects.”

Finally, the ethane cracker is predicted to emit 1,785,043 tons per year of greenhouse gasses. In the wake of recent warnings on the urgent need to limit greenhouse gas emissions from the Intergovernmental Panel on Climate Change and National Climate Assessment, this prediction is highly concerning.

While these emission numbers seem high, they still meet federal requirements and nearly all state guidelines. If the ethane cracker becomes operational, pollutant monitoring will be important to ensure the plant is in compliance and how emissions impact air quality. The plant will also attract more development to an already heavily industrialized area; brine trucks, trains, pipelines, fracked wells, compressor stations, cryogenic facilities, and natural gas liquid storage are all part of the ethane-to-plastic manufacturing process. The plastics coming from the plant will travel to facilities in the U.S. and abroad to create different plastic products. These facilities are an additional source of emissions.

Air permitting does not consider the full life cycle of the plant, from construction of the plant to its demolition, or the development associated with it.

As such, this plant will be major step back for local air quality, erasing recent improvements in the Wheeling metropolitan area, historically listed as one of the most polluted metropolitan areas in the country. Furthermore, the pollutants that will be increasing the most are associated with serious health effects. Over short term exposure, high levels of VOCs are associated with headaches and respiratory symptoms, and over long term exposure, cancer, liver and kidney damage.

Emergency preparedness

In addition to air quality impacts, ethane cracker plants also pose risks from fires, explosions, and other types of unplanned accidents. In 2013, a ruptured boiler at an ethane cracker in Louisiana caused an explosion that sent 30,000 lbs. of flammable hydrocarbons into the air. Three hundred workers evacuated, but sadly there were 167 suffered injuries and 2 deaths.

While researching Shell’s ethane cracker in Beaver County, FracTracker worked with the Emergency Operations Center (EOC) in St. Charles Parish, Louisiana, to learn about emergency planning around the petrochemical industry. Emergency planners map out two and five mile zones around facilities, called emergency planning zones, and identify vulnerabilities and emergency responders within them.

With this in mind, the map below shows a two and five-mile radius around PTTGC’s property, as reported by Belmont County Auditor. Within these emergency planning zones are the locations of schools, day cares, hospitals, fire stations, emergency medical services, hospitals, and local law enforcement offices, reported by Homeland Infrastructure Foundation Level Data.

The map also includes census data from the EPA that identifies potential environmental justice concerns. By clicking on the census block groups, you will see demographic information, such as income status, age, and education level. These data are important in recognizing populations that may already be disproportionately burdened by or more vulnerable to environmental hazards.

Finally, the map displays environmental data, also from the EPA, including a visualization of particulate matter along the Ohio River Valley, where massive petrochemical development is occurring. By clicking on a census block and then the arrow at the top, you will find a number of other statistics on local environmental concerns.

View map full screen  |  How FracTracker maps work

Emergency planning zones for Shell’s ethane cracker are available here.

Within the 5 mile emergency planning zone, there are:

  • 9 fire or EMS stations
  • 17 schools and/or day cares
  • 1 hospital
  • 6 local law enforcement offices

Within the 2 mile emergency planning zone, there are:

  • 3 fire or EMS stations
  • 7 schools and/or day cares
  • No hospitals
  • 3 local law enforcement offices

Sites of capacity, such as the fire and EMS stations, could provide emergency support in the case of an accident. Sites of vulnerability, such as the many schools and day cares, should be aware of and prepared to respond to the various physical and chemical risks associated with ethane crackers.

The census block where the ethane cracker is planned has a population of 1,252. Of this population, 359 are 65 years or older. That is well above national average and important to note; air pollutants released from the plant are associated with health effects such as cardiovascular and respiratory disease, to which older populations are more vulnerable.

Conclusion

PTTGC’s ethane cracker, if built, will drastically alter the air quality of Belmont County, OH, and the adjacent Marshall County, WV. Everyday, the thousands of people in the surrounding region, including the students of over a dozen schools, will breathe in its emissions.

This population is also vulnerable to unpredictable accidents and explosions that are a risk when manufacturing products from ethane, a highly flammable liquid. Many of these concerns were recently voiced by local residents at the air permit hearing.

Despite these concerns and pushback, PTTGC’s website for this ethane cracker, pttgcbelmontcountyoh.com, does not address emergency plans for the area. It also fails to acknowledge the potential for any adverse environmental impacts associated with the plant or the pipelines, fracked wells, and train and truck traffic it will attract to the region.

With this in mind, we call upon PTTGC to acknowledge the risks of its facility to Belmont County and provide the public with emergency preparedness plans, before the permitting process continues.

If you have thoughts or concerns regarding PTTGC’s ethane cracker and its impact on air quality, the Ohio EPA is accepting written comments through December 11, 2018. We encourage you to look through the data on this map or conduct your own investigations and submit comments on air permit #P0124972.

Written comments should be sent to:

Ohio EPA SEDO-DAPC, Attn: Kimbra Reinbold
2195 Front St
Logan, OH 43138
Kimbra.reinbold@epa.ohio.gov

(Include permit #P0124972 within your comment)

By Erica Jackson, Community Outreach and Communications Specialist

Frac sand mining from the sky in Wisconsin

Wisconsin’s Nonmetallic Mining Parcel Registration Program

How the frac sand industry is circumventing local control, plus where the industry is migrating

What is nonmetallic mineral mining?

It was more than a year and half ago that anti-frac sand organizer – and movement matriarch – Pat Popple published a white paper by attorney Elizabeth Feil in her Frac Sand Sentinel newsletter. The paper outlined potential impacts of something the Wisconsin Department of Natural Resources (DNR) calls the “Marketable Nonmetallic Mineral Deposit Registration” (MNMDR) program.

The program, passed in 2000, is outlined in Wisconsin’s administrative code under Subchapter VI “Registration of Marketable Nonmetallic Mineral Deposits (NR 135.53-NR 135.64). This program allows landowners to register parcels that sit atop marketable nonmetallic mineral deposits, such as frac sand, according to a licensed professional geologist. The geologist uses “logs or records of drilling, boring, geophysical surveys, records of physical inspections of outcrops or equivalent scientific data” to outline the quality, extent, depth, accessibility, and current market value of the minerals.

If a mine operator is not the landowner, it must first coordinate registration with the landowner to:

… provide protection against present or future land uses, such as the erection of permanent structures, that would impede their development…to promote more orderly future development of identified nonmetallic mineral resources and minimize conflict among land uses.

Where is frac sand mining occurring in Wisconsin?


Photos by Ted Auch, Fractracker Alliance, and aerial support provided by LightHawk

Limitations of the registration program

The only requirement under this program is that the landowner “provide evidence that nonmetallic mining is a permitted or conditional use for the land under zoning in effect on the day in which notice is provided to the zoning authorities.” All registrations must be recorded in the county’s registrar of deeds 120 days before filing the registration. This process results in zoning authorities having a 60-day window to determine if they support or object to registrations in circuit courts.

Once counties are notified, they have no recourse for objection aside from proving that the deposit is not marketable or the parcel is not zoned for mining.

As Ms. Feil wrote, this program “preserves…[parcel] eligibility for nonmetallic mining in the future, even if a local governing body later passes new mining restrictions.” The former will have already been proven by the licensed geologist, and the latter is highly unlikely given lax or non-existent zoning in rural Wisconsin, where many land parcels are outside incorporated townships. Any parcel registered on this program remains in the program for a 10 year period and may be automatically re-registered under the initial geological assessment for another 10 year term “at least 10 days and no more than one year before registration expires.”

After this 20-year period, parcels start from scratch with respect to the registration process.

Initial inquiry and map methodology

As part of her white paper, Ms. Feil noted that in a quick check of her home county’s register of deeds, she found six nonmetallic mineral deposit registrations since 2000 in Trempealeau County and nine in neighboring Chippewa County. As a result of Ms. Feil’s initial inquiry, we decided it would be worth conducting a sweeping search for all nonmetallic parcel registrations in the nine most heavily frac sand-mined Wisconsin counties: Trempealeau, Barron, Crawford, Chippewa, Monroe, Jackson, Clark, Dunn, and Eau Claire.

“Wisconsin Nonmetallic Mineral Deposit Parcel Registrations and Likely Mine Parcels” Map

We were fortunate enough to receive funding from the Save The Hills Alliance (STHA) to conduct this research. We received “boots on the ground” assistance from the likes of Ms. Feil, Ms. Popple, and several other volunteers for acquiring hard copies of registrations as of the summer of 2018.

Our goal was to construct a map that would provide a predictive and dynamic tool for residents, activists, non-profits, researchers, local governments, and journalists to understand the future scale and scope of frac sand mining across West Central Wisconsin. We hope this will inspire a network of citizen scientists and mapping tools that can serve as a model for analogous efforts in Illinois, Minnesota, and Southeastern Michigan.

In addition to identifying parcels falling under Wisconsin DNR’s MNMDR registration program, we also used Wisconsin’s State Cartographer’s Office and Land Information Program “V4 Statewide Parcel Data” to extract all parcels:

  1. Currently owned by active or historically relevant frac sand mine operators and their subsidiaries,
  2. Owned by families or entities that have allowed for mining to occur on their property and/or have registered parcels under the MNMDR program, and,
  3. All cranberry production parcels in Wisconsin frac sand counties – namely Monroe, Jackson, Clark, Wood, and Eau Claire, with Monroe, Jackson, and Wood the state’s top producing counties by acreage.

The latter were included in the map because Wisconsin DNR identified the importance of cranberry bogs in their Silica Sand Mining in Wisconsin January 2012 report. The report defined the “Cranberry Exemption” as follows:

Some of the counties in central Wisconsin that are seeing an increase in frac sand mining are also home to much of the state’s cranberry farming. Mining sand is a routine practice in the process of raising cranberries. Growers use sand in the cranberry beds to provide adequate drainage for the roots of the cranberry plants. The sand prevents root rot and fosters plant growth. Chapter 94.26, Wis. Stats, was established in 1867 and exempts cranberry growers from much of the laws applying to waters of the state under Chapter 30, Wis. Stats. With this exemption in place cranberry growers can, in theory, mine sand wherever and however they desire for use in cranberry production. Some cranberry growers are taking advantage of the high demand for sand and are selling their sand on the frac sand market (emphasis added). However, the Department has recently determined that the exemption in Ch. 94.26, Wis. Stats., from portions of Chapters 30 and 31, Wis. Stats., for cranberry culture is not applicable to non-metallic mining sites where a NR 216, W is. Adm. Code, stormwater permit is required. For those non-metallic mining operations where the material is sold and hauled off site, Chapters 30 and 31, Wis. Stats., jurisdiction will be applied.

Finally, the last data layer we’ve included in this map speaks to the enormous volumes of subsurface water that the industrial sand mining industry has consumed since 2010. This layer includes monthly and annual water volume withdrawals by way of 137 industrial sand mine (i.e., IN 65) high capacity wells (Our thanks to Wisconsin DNR Water Supply Specialist – Bureau of Drinking Water and Groundwater’s Bob Smail for helping us to compile this data.)

We have coupled that data to annual tonnages in order to quantify gallons per ton ratios for several mines across several years.

Results

Below is the completed map of current and potential frac sand mines in West Central Wisconsin, as well as high capacity wells. Click on the features of the map for more details.

.embed-container {position: relative; padding-bottom: 80%; height: 0; max-width: 100%;} .embed-container iframe, .embed-container object, .embed-container iframe{position: absolute; top: 0; left: 0; width: 100%; height: 100%;} small{position: absolute; z-index: 40; bottom: 0; margin-bottom: -15px;}

View Map Full Screen| How FracTracker maps work 

We identified 4,049 nonmetallic parcel registration and existing sand mine operator parcels totaling 113,985 acres or 178 square miles spread across 14 counties in West Central Wisconsin (Table 1). The largest parcel sizes were U.S. Silica’s 398-acre parcel in Sparta, Monroe County and Badger Mining’s 330-acre parcel in St. Marie, Green Lake County. The average parcel is a mere 28 acres.

To put these figures in perspective, back in 2013 we quantified the full extent of land-use change associated with frac sand mining in this same region and found that the 75 active mines at the time occupied a total of 5,859 acres and averaged roughly 75 acres in size. This means that if current parcel ownership and nonmetallic parcel registrations run their course, the impact of frac sand mining from a land-use perspective could potentially increase by 1,900%!

This is an astounding development and would alter large chunks of West Central Wisconsin’s working landscape, dairy industry, and “Badger State” mentality forever.

Table 1. Nonmetallic or operator-owned frac sand parcels and their total and average acreage in 14 West Central Wisconsin counties

County Number of Parcels Total Acreage Average Parcel Acreage
Barron 267 8,737 33
Buffalo 211 5,902 28
Burnett 4 140 35
Chippewa 580 15,585 27
Clark 74 2,391 32
Dunn 73 2,245 31
Eau Claire 151 4,101 27
Green Lake 74 2,648 36
Jackson 1,128 36,152 32
Monroe 459 11,185 24
Pierce 168 3,415 20
Rusk 2 64 32
Trempealeau 787 19,375 25
Wood 71 2,044 29

As for the “Cranberry Exemption” identified by Wisconsin DNR, we identified an additional 3,090 cranberry operator or family-owned parcels totaling 98,217 acres or 153 square miles – nearly equal to the acreage identified above. Figure 1 shows the extent of cranberry bog parcels and frac sand mines in Monroe, Wood, and Jackson Counties. The two largest parcels in this inquiry were the 275-acre parcel owned by Fairview Cranberry in Monroe County and a 231 acre-parcel owned by Ocean Spray in Wood County. Interestingly, the former is already home to a sizeable (i.e., 266 acres) frac sand mine operated by Smart Sand pictured and mapped in Figure 2.

Figure 1. Cranberry bog parcels and frac sand mines in the Wisconsin counties of Monroe, Jackson, and Wood

Figure 2. Current and potential extent of Smart Sand’s Fairview Cranberry frac sand mine, Tomah, Monroe County, Wisconsin

In total, the potential for mine expansion in West Central Wisconsin could consume an additional 212,202 acres or 331 square miles. Characterized by dairy farms, and also known as The Driftless Area, this region is where Aldo Leopold penned his masterpiece, A Sand County Almanac. To give a sense of scale to these numbers, it is worth noting that this type of acreage would be like clearing an area the size of the Dallas-Fort Worth metropolis.

Project limitations and emerging concerns

After completing this project, Liz Feil, Pat Popple, and I got on the phone to discuss what we perceived to be its limitations, as well as their concerns with the process and the implications of the MNMDR program, which are listed below:

1. Both Liz and Pat found that when they visited certain counties to inquire as to parcel registrations, most of the registrars of deeds had very little, if any, idea as to what they were talking about, which begged the questions:

  • Why does Wisconsin not have a uniform protocol and archival process for such registrations?
  • What are the implications of this program with respect to county and township taxable lands, future zoning, and/or master planning?
  • What does this program mean for surface and mineral rights ownership in Wisconsin, a state where these two are coupled or decoupled on a parcel by parcel basis?

2. Liz and Pat felt they ended up teaching county registrars more about this registration process during this exercise than they ended up learning themselves.

3. Given the potential ramifications of these types of programs, such registrations should be centrally archived rather than archived at disparate sites across the state. Registrations should be explicitly bolted onto efforts like the aforementioned statewide V4 Statewide Parcel Data, given the fact that the MNMDR parcels are registered for 10 years.

The footprint of frac sand mining at any one point is just a glimpse into how vast its influence could be in the future. Mapping parcel ownership like we’ve done gives people a more realistic sense for the scale and scope of mining in the future and is a more realistic way to analyze the costs/benefits of such an industry. This type of mapping exercise would have greatly benefited those that live in the coal fields of Appalachia and the Powder River Basin as they began to debate and regulate mining, rather than the way they were presented with proposals as smaller discrete operations.

This piecemeal process belies the environmental and social impact of any industrial process, which frac sand mining very much is.

Industrial sand mining and high capacity wells

There is a growing concern, based on a thorough analysis of the data, that the High Volume Hydraulic Fracturing (HVHF) industry’s unquenchable thirst for freshwater is growing at an unsustainable rate. Here at FracTracker, we have been quantifying the exponential increase in HVHF water use, namely in Ohio’s Muskingum River Watershed and northern West Virginia, for more than five years now. More recently, Duke University’s Avner Vengosh has conducted a thorough national analysis of this trend.

While the trends in HVHF water use and waste production are disturbing, such analysis leaves out the water industry uses to mine and process frac sand, or “proppant” in places like Wisconsin, Minnesota, and Illinois. Failure to incorporate such values in an analysis of HVHF’s impact on freshwater, both surface and subsurface, grossly underestimates the industry’s impact on watersheds and competing water uses.

Figure 3 shows monthly and cumulative water demand of frac sand mining. The first thing to point out is the marked seasonal disparities in water withdrawals due to the fact that many of Wisconsin’s frac sand mines go dormant during the winter and ramp up as soon as the ground thaws. The most important result of this work is that we finally have a sense for the total volumes of water permanently altered by the frac sand mining industry:

An astounding 30 billion gallons of water were used between January 2010 and December 2017

This figure is equivalent to the annual demand of ~72,500 US residents (based on an assumption of 418,184 gallons per year). This figure is also equivalent to between 2,179 and 3,051 HVHF wells in Ohio/West Virginia.

Figure 3. Cumulative and monthly water demand by Wisconsin’s frac sand mine Hi-Cap wells, January 2010-December 2017

A graph of water use trends for frac sand mining which shows significant increase in monthly and cumulative water consumptionFigure 4 shows water use by operator. The worst actors with respect to water withdrawals over this period were two wells serving Hi-Crush’s active Wyeville mine that in total used 9.6 billion gallons of subsurface water. Covia Holdings, formerly Unimin and Fairmount Santrol, utilized 5.8 billion gallons in processing an undisclosed amount of frac sand at their Tunnel City mine. Covia’s neighboring mine in Oakdale, owned by Wisconsin White Sand and Smart Sand, used more than 2.5 billion gallons during this period spread across six high-capacity wells.

Figure 4. Total water usage by operator, January 2010-December 2017

Water Use Graph by Frac Sand Operator, 2010-2017These tremendous water volumes prompted us to ask whether we could determine the amount of water needed to mine a typical ton of Wisconsin frac sand. There are numerous issues with data quality and quantity at the individual mine level and those issues stretch from the USGS all the way down to individual townships. However, some townships do collect tonnage records and/or “Fees Tied to Production” from mine operators which allow us to quantify productivity. Using this scant data and the above water volume data we were able to determine “gallons to tons of sand mined” ratios for the years of 2013, 2014, 2015, and/or 2017 for four mines and those ratios range between 30-39 to as much as 521 gallons of water per ton of sand (Table 2).

Table 2. Gallons of water per ton of sand mined for four Wisconsin frac sand mines, 2013-2017

 

Owner

 

Property

 

City

 

County

Gallon Per Ton
2013 2014 2015 2017
Wisconsin Industrial Sand Maiden Rock Facility Maiden Rock Pierce 98 90 66
Thompson, Terry Thompson Hills Mine Chetek Barron 30 521
Lagesse, Samuel NA Bloomer Chippewa 39 48
CSP Rice Lake Mine Rice Lake Barron 104

Conclusions

For far too long we’ve been monitoring frac sand mining retrospectively or in the present tense. We’ve had very little data available to allow for prospective planning or to model the impact of this industry and its role in the Hydraulic Fracturing Industrial Complex writ large. Given what we are learning about the fracking industry’s insatiable appetite for water and sand, it is imperative that we understand where frac sand mining will occur if this appetite continues to grow (as we expect it may, given the current political environment at the state and federal level).

Three examples of this growing demand can be found in our work across the Great Lakes:

1) With the new age of what the HVHF industry is calling “Super Laterals”, between 2010 and 2017 we saw average proppant demand jump nearly six-fold to roughly 25-30 thousand tons per lateral.

2) In Le Sueur County, MN Covia – which is a recent merger of silica mining giants Unimin and Fairmount Santrol – has plans and/or parcel ownership speaking to the potential for an 11-fold increase in their mining operations, which would increase acreage from 560 to 6,500 acres (if sand demand increases at its current clip) (Figures 5 and 6).

 

Figure 5. Unimin’s current 560-acre frac sand mine parcel in Kasota, Le Sueur County

 

Figure 6. The potential 6,500 extent of Unimin mining by way of parcel ownership search

 

3) As we’ve previously highlighted, the potential outside Detroit, Michigan for US Silica to expand its current frac sand mining operations would displace hundreds of families. The planned expansion would grow their mine from its current 650-acre footprint to nearly 1,400 acres in the town of South Rockwood, Monroe County (Figure 7).

 

Figure 7. US Silica’s current (642 acres) and potential (1,341 acres) frac sand mine footprint in Monroe County, Michigan.

Given our experience mapping and quantifying the current and future impact of frac sand mining in states with limited mining activity, we felt it was critical that we apply this methodology to the state where industry is mining a preponderance of frac sand. However, this analysis was rendered a bit more complicated by the presence of the MNMDR program and Wisconsin DNR’s “Cranberry Exemption.” Adding to the challenge is the fact that many in Wisconsin’s frac sand communities demanded that we address the tremendous volumes of water being used by the industry and work to incorporate such data into any resulting map.

We hope that this map allows Wisconsin residents to act in a more offensive and prospective way in voicing their concerns, or simply to become better informed on how sand mining has impacted other communities, will influence them, and what the landscape could look like in the future.

It is critical that we see sand mining not as discrete mines with discrete water demands but rather as a continuum, or better yet an ecosystem, that could potentially swallow large up sizeable chunks of Western Wisconsin.


By Ted Auch, Great Lakes Program Coordinator, FracTracker Alliance

P.S. We’ll continue to add MNMDR registered parcels periodically. As parcels change ownership, we will be sure to update both the cranberry bog and industry owned parcel inventory in the comings months and years.

Clearing land for shale gas pipeline in PA

Rapid Pipeline Development Affecting Pennsylvanians

In recent years, Pennsylvanians have had to endure numerous massive pipeline projects in the Commonwealth. Some of these, such as the Mariner East 2, the Revolution, and the Atlantic Sunrise, have been beset with continuous problems. In fact, both the Mariner East 2 and the Revolution projects had their operations suspended in 2018. The operators have struggled to grapple with a variety of issues – ranging from sinkholes near houses, erosion and sediment issues, hundreds of bentonite spills into the waters and upland areas of Pennsylvania, and more.

Part of the reason for the recent spate of incidents is the fact that so many pipelines are being built right now. These lines are traversing through undermined areas and land known to have underground karst formations, which are prone to subsidence and sinkholes. With more than 90,000 miles of pipelines and 84,000 miles of streams in Pennsylvania, substantial erosion and runoff issues are unfortunately quite common.

Map of pipeline routes in southwestern PA, various pipeline incidents, and karst formations:

Click here to learn more about recent pipeline incidents in Pennsylvania, along with how users of the FracTracker App have helped to chronicle problems associated with them.

Residents keeping track

Many residents have been trying to document issues in their region of Pennsylvania for a long time. Any pipeline incident should be reported to the Department of Environmental Protection (DEP), but in some instances, people want other residents to know and see what is going on, and submission to DEP does not allow for that. FracTracker’s Mobile App allow users to submit a detailed report, including photographs, which are shared with the public. App users have submitted more than 50 photographs of pipelines in Pennsylvania, including these images below.

The FracTracker Mobile App uses crowd-sourced data to document and map a notoriously nontransparent industry. App users can also report violations, spills, or whatever they find striking. For example, the first image shows construction of the Mariner East 2 in extreme proximity to high density housing. While regulators did approve this construction, and it is therefore not a violation, the app user wanted others to see the impact to nearby residents. Other photos do show incidents, such as the second photo on the second row, showing the sinkhole that appeared along the Mariner East 1 during the construction of the nearby Mariner East 2 pipeline.

Please note that app submissions are not currently shared with DEP, so if you happen to submit an incident on our app that you think they should know about, please contact their office, as well. The FracTracker Mobile App provides latitude and longitude coordinates to make it easier for regulators to find the issue in question.

Why have there been so many problems with pipelines in recent years? 

Drillers in Pennsylvania’s Marcellus Shale and other unconventional formations predicted that they would find a lot of natural gas, and they have been right about that. However, the large resulting supply of natural gas from this industrial-scaled drilling is more than the region can use. As a result, gas prices remain low, making drilling unprofitable in many cases, or keep profit margins very low in others.

The industry’s solution to this has been two-pronged. First, there is a massive effort underway to export the gas to other markets. Although there are already more than 2.5 million miles of natural gas pipelines in the United States, or more than 10 times the distance from the Earth to the Moon, it was apparently an insufficient network to achieve the desired outcome in commodity prices.  The long list of recent and proposed pipeline projects, complete with information about their status, can be downloaded from the Energy Information Administration (Excel format).

The industry’s other grand effort is to create demand for natural gas liquids (NGLs, mostly ethane, propane, and butane) that accompanies the methane produced in the southwestern portion of the state. The centerpiece of this plan is the construction of multiple ethane crackers, such as the one currently being built in Beaver County by Royal Dutch Shell, for the creation of a new plastics industry in northern Appalachia. These sites will be massive consumers of NGLs which will have to be piped in through pressurized hazardous liquid routes, and would presumably serve to lock in production of unconventional gas in the region for decades to come.

Are regulators doing enough to help prevent these pipeline development problems?

In 2010, the Pipeline and Hazardous Materials Safety Administration (PHMSA) led the formation of an advisory group called Pipelines and Informed Planning Alliance (PIPA), comprised mostly of industry and various state and local officials. Appendix D of their report includes a long list of activities that should not occur in pipeline rights-of-way, from all-terrain vehicle use to orchards to water wells. These activities could impact the structural integrity of the pipeline or impede the operator’s ability to promptly respond to an incident and excavate the pipe.

However, we find this list to be decidedly one-directional. While the document states that these activities should be restricted in the vicinity of pipelines, it does not infer that pipelines shouldn’t be constructed where the activities already occur:

This table should not be interpreted as guidance for the construction of new pipelines amongst existing land uses as they may require different considerations or limitations. Managing land use activities is a challenge for all stakeholders. Land use activities can contribute to the occurrence of a transmission pipeline incident and expose those working or living near a transmission pipeline to harm should an incident occur.

Pipeline being constructed near a home

While we understand the need to be flexible, and we certainly agree that every measure should be taken by those engaging in the dozens of use types listed in the PIPA report, it equally makes sense for the midstream industry to take its own advice, and refrain from building pipelines where these other land uses are already in place, as well. If a carport is disallowed because, “Access for transmission pipeline maintenance, inspection, and repair activities preclude this use,” then what possible excuse can there be to building pipelines adjacent to homes?

What distance is far enough away to escape catastrophic failure in the event of a pipeline fire or blast?

This chart shows varying hazard distances from natural gas pipelines, based on the pipe’s diameter and pressure. Source:  Mark J. Stephens, A Model for Sizing High Consequence Areas Associated with Natural Gas Pipelines

It turns out that it depends pretty dramatically on the diameter and pressure of the pipe, as well as the nature of the hydrocarbon being transported. A 2000 report estimates that it could be as little as a 150-foot radius for low-pressure 6-inch pipes carrying methane, whereas a 42-inch pipe at 1,400 pounds per square inch (psi) could be a threat to structures more than 1,000 feet away on either side of the pipeline. There is no way that the general public, or even local officials, could know the hazard zone for something so variable.

While contacting Pennsylvania One Call before any excavation is required, many people may not consider a large portion of the other use cases outlined in the PIPA document to be a risk, and therefore may not know to contact One Call. To that end, we think that hazard placards would be useful, not just at the placement of the pipeline itself, but along its calculated hazard zone, so that residents are aware of the underlying risks.

Valve spacing

If there is an incident, it is obviously critical for operators to be able to respond as quickly as possible. In most cases, a part of this process will be shutting off the flow at the nearest upstream valve, thereby stopping the flow of the hydrocarbons to the atmosphere in the case of a leak, and cutting the source of fuel in the event of a fire. Speed is only one factor in ameliorating the problem, however, with the spacing between shutoff valves being another important component.

Comprehensive datasets on pipeline valves are difficult to come by, but in FracTracker’s deep dive into the Falcon ethane pipeline project, which is proposed to supply the Shell ethane cracker facility under construction Beaver County, we see that there are 18 shutoff valves planned for the 97.5 mile route, or one per every 5.4 miles of pipe. We also know that the Falcon will operate at a maximum pressure of 1,440 psi, and has pipe diameters ranging from 10 to 16 inches. The amount of ethane that could escape is considerable, even if Shell were able to shut the flow off at the valve instantly. It stands to reason that more shutoff valves would serve to lessen the impact of releases or the severity of fires and explosions, by reducing the flow of fuel to impacted area.

Conclusion

Groups promoting the oil and gas industry like to speak of natural gas development as clean and safe, but unless we are comparing the industry to something else that is dirtier or more dangerous, these words are really just used to provoke an emotional response.  Even governmental agencies like PHMSA are using the rhetoric.

PHMSA’s mission is to protect people and the environment by advancing the safe transportation of energy and other hazardous materials that are essential to our daily lives.

If the safe transportation of hazardous materials sounds oxymoronic, it should.  Oil and gas, and related processed hydrocarbons, are inherently dangerous and polluting.

Report Events Fatalities Injuries Explosions Evacuees Total Damages
Gas Distribution 29 8 19 12 778 $6,769,061
Gas Transmission / Gathering 30 0 2 2 292 $51,048,027
Hazardous Liquids 49 0 0 1 48 $9,115,036
Grand Total 108 8 21 15 1,118 $66,932,124

Impacts of pipeline incidents in Pennsylvania from January 1, 2010 through July 13, 2018.  National totals for the same time include 5,308 incidents resulting  125 fatalities, 550 injuries, 283 explosions, and nearly $4 billion in property damage.

Current investments in large-scale transmission pipelines and those facilitating massive petrochemical facilities like ethane crackers are designed to lock Pennsylvania into decades of exposure to this hazardous industry, which will not only adversely the environment and the people who live here, but keep us stuck on old technology.  Innovations in renewable energy such as solar and wind will continue, and Pennsylvania’s impressive research and manufacturing capacity could make us well positioned to be a leader of that energy transformation.  But Pennsylvania needs to make that decision, and cease being champions of an industry that is hurting us.


By Matt Kelso, Manager of Data and Technology

This is the second article in a two-part series. Explore the first article: PA Pipelines and Pollution Events.

Map of offshore drilling in California

The Feds Trump California’s State Ban on Offshore Oil Drilling

Offshore drilling in the United States federal waters has caused the most environmentally destructive disasters in North America. Yet, new policy is pushing for the expansion of offshore drilling, particularly off the coast of California.

Offshore Drilling History

In 1969, Union Oil’s offshore rig Platform A had a blowout that leaked 100,000 barrels into the Santa Barbara Channel, one of the most biologically diverse marine environments in the world. The spill lasted ten days and killed an estimated 3,500 sea birds, as well as an untold number of marine mammals. Unbelievably, the Santa Barbara spill is only the third largest spill in U.S. waters. It follows the 1989 Exxon Valdez and the 2010 Deepwater Horizon spills. These incidents keep getting bigger.

More offshore drilling means a higher risk of catastrophe, additional contamination of air and water locally, and more greenhouse gas emissions globally.

Federal Moratorium on California Offshore Leases

Up until the beginning of 2018, further oil and gas development using offshore oil rig platforms seemed quite unlikely. After the 1969 oil spill from Platform A and the subsequent ban on further leasing in state waters, the risk of another devastating oil spill was too large for even the federal government to consider new leases. The fact that the moratorium lasted through 16 years of Bush presidencies is truly a victory. Across the aisle, expanding offshore operations has been opposed. In Florida, even Republican Governor Rick Scott teamed up with environmental groups to fight the Department of Interior’s recent sales of offshore leases.

Trump’s New Gas Leasing Program

Now, the U.S. Bureau of Ocean Energy Management (BOEM) is preparing a new 2019-2024 national Outer Continental Shelf (OCS) oil and gas leasing program to replace the existing 2017-2022 program. This is an unusual practice, and part of Trump’s America-First Offshore Energy Strategy. The Trump administration opened up most of the US coastal waters for new oil and gas drilling with a recent draft proposal offering 47 new offshore block lease sales to take place between 2019 and 2024.

Where might these new leases occur?

The offshore federal waters that are open for oil and gas leases are shown in dark blue in the map below (Figure 1). Zoom out to see the extent.

Figure 1. Map of Offshore Oil and Gas Extraction


View map fullscreen | How FracTracker maps work | Map Data Download (CSV)

California’s Offshore Oil

Southern California has a legacy of oil extraction, particularly Los Angeles. It’s not just the federal government that is keen on continuing this legacy. While the state has not permitted the leasing of new blocks in offshore waters, Governor Brown’s policies have been very friendly to the oil and gas industry. According to Oil Change International’s Sky’s the Limit report: “Under the Brown administration, the state has permitted the drilling of more than 20,000 new wells,” including 5,000 offshore wells in state waters. About 2,000 of these offshore wells have been drilled since 2012.

This map developed in collaboration with Consumer Watch Dog juxtaposes the offshore wells drilled in CA state waters with those drilled in federal waters.

Southern California is the main target for future offshore leasing. The Monterey Shale formation, which underlies the city of Los Angeles and expands north offshore to the Ventura Coast, is thought to contain the largest conventional oil plays left IN THE WORLD! The map above shows the locations of state and federal offshore oil and gas wells and the rigs that service them. It also shows historical wells off the coast of Northern California.

Northern California, both onshore and offshore, sits on top of major reserves of natural gas, which may also be developed given the political climate. With an increase in the price of natural gas, operators will be developing these gas fields. Some operators, such as Chevron, have already drilled natural gas wells in northern California, but have left the wells “shut in” (capped) until production becomes more profitable.

For a more comprehensive coverage on environmental impacts of offshore operations, including those to sensitive species, check out the Environmental Defense Center’s Dirty Water Report and read our additional coverage of California’s existing offshore drilling, and offshore fracking.

Air Pollution from Oil Rigs

FracTracker, in collaboration with Earthworks, recently teamed up with the Center for Biological Diversity and Greenpeace International to get up close to offshore oil rigs. As a certified Optical Gas Imaging Thermographer, Kyle Ferrar (Western Program Coordinator for FracTracker Alliance and California Community Empowerment Project Organizer for Earthworks), took footage of the offshore oil rigs.

Using infrared technology, we were able to visualize and record emissions and leaks of volatile hydrocarbons and other greenhouse gases coming from these offshore sites. We documented many cases of intense flaring from the rigs, including several cases where the poorly burning flare allowed hydrocarbons to be leaked to the atmosphere prior to complete combustion of CO2.

More complete coverage of this trip can be found here on the Greenpeace website.

Below you can view a compilation of the footage we were able to capture from small pontoon boats.

Conclusion

FracTracker has looked at offshore oil and gas drilling from many different angles. We have looked to the past, and found the most egregious environmental damages in U.S. history. We have analyzed the data and shown where, when, and how much offshore drilling is happening in California. We have demonstrated that much of the drilling and many of the proposed leases are in protected and sensitive habitats. We have looked at policy and found that both Governor Brown and President Trump are aligned to promote more oil and gas development. We have even looked at the rigs in person in multiple spectrums of light and found that these operations continuously leak and emit greenhouse gases and other air toxins.

No matter which way you look at offshore oil and gas drilling, it is clearly one of the most threatening methods of oil and gas extraction in use today.


By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Virtual Pipelines - Potential Routes to Cayuga

Virtual pipelines: Convenient for Industry, a Burden on Communities

As the natural gas industry faces harsher and more widespread critiques from environmentalists and citizens, pipeline projects are facing delays, fines, and defeat. Aside from the questionable economics behind transporting gas and oil by pipeline, there are broad economic risks associated with pipeline accidents. With an increasing list of pipeline-related accidents in the public eye, including the two this past summer in Texas and Kansas, blasts this fall in Beaver County, PA, and in Boston, MA, scrutiny of new pipeline projects is on the uptick.

That being said, what is the alternative?

Virtual Pipelines?

Virtual Pipeline - Oil and gas truck

Loaded CNG transport vehicle

Industry, not deterred by resistance from regulators and environmentalists, has developed a new work-around method to get their product to market. Rather than build pipelines across rugged, remote, or highly-populated terrain, a new “solution” called “virtual pipelines” has come on the scene, with roots in New England in 2011.

The term “virtual pipeline,” itself, is so new that it is trademarked by Xpress Natural Gas (XNG), Boston, MA. XNG and other virtual pipeline companies use specially-designed tanker trucks to move compressed natural gas (CNG) or liquefied natural gas (LNG) via our public roads and highways. CNG in this system is under very high pressure — up to 3,600 psi when tank trailers are full. Rail and barge shipments are also considered part of the system, and trailers are designed to be easily loaded onto train cars or boats.

For the gas industry, virtual pipelines can be used in locales where gas is only needed for a limited time period, the pipeline network is not developed, or opposition by landowners is too contentious to make eminent domain an option, among other issues. These virtual pipeline trucks are identifiable by the hazard class 2.1 placard they carry: 1971, indicative of flammable, compressed natural gas or methane.

Restricted only by permissible weight limits on roads (up to 80,000 pounds or more), 5-axle trucks may make in excess of 100 round trips a day from the fueling location to their destination — sometimes hundreds of miles away. These trucks, which may travel alone or in caravans, are identifiable by the hazard class 2.1 placard they carry: 1971, indicative of flammable, compressed natural gas or methane. Manufacturers of these virtual pipeline rigs tout the safety considerations that go into their engineered design. These considerations include special pressure monitoring for the dozens of tanks and super-strength materials to protect against ruptures.

Specialized equipment has been created to load compressed gas tanks into the trailers that will carry them to their destinations. Here’s a promotional video from Quantum:

Loading CNG into specialized trailers for transport

Impacts on Communities

Following New York State’s rejection of the Constitution Pipeline in 2016 based on water quality concerns, industry has been looking for ways to move natural gas from Pennsylvania’s Marcellus gas fields to the Iroquois Pipeline. The current strategy is to load the gas in canisters from a special compressor facility, and re-inject the gas to a pipeline at the journey’s endpoint. The extent to which virtual pipelines may be utilized in New York State and New England is not well known, but the natural gas industry does speak in sanguine terms about this strategy as a solution to many of its transportation issues.

Citizen blogger/activist Bill Huston has compiled a list accidents that have occurred with CNG transport trucks along the virtual pipeline that runs from a “mother station” at Forest Lake, PA to Manheim, NY, near the Iroquois pipeline. While there have been no explosions or loss of life as a result of these accidents, there are a number of reported incidents of trucks tipping or rolling over, sliding off the road, or spontaneously venting.

To move CNG from “Point A” to “Point B,” truck traffic through populated areas is unavoidable. In central New York, public outcry about virtual pipelines is rising, due in large part to the safety issues associated with increased truck traffic on state highways. In rural New York, state highways run through towns, villages, and cities. They are not separated from population centers in the way that interstate highways typically are. Traffic from CNG transport trucks clogs roadways, in some cases burdening the pass-through communities with 100 or more tractor trailers a day. Routes pass directly in front of schools and health care facilities.

In short, virtual pipelines present a public safety hazard that has yet to be addressed.

Virtual Pipelines and the Cayuga Power Plant 

In Lansing, NY, there is an inefficient and economically-beleaguered power plant, currently run on coal, that the power utility would prefer to see shut down. The Cayuga Power Plant was cited in 2016 for exceeding mercury emissions by nearly 2000%. Its inherently inefficient design makes it a significant greenhouse gas contributor. Years ago, it provided considerable tax benefits to its host community of Lansing, and as such has some lingering support. After both a devastating fire in one stack and mechanical failure in another, the plant has been barely running for the past 3 or 4 years. It is currently used as a “peaker plant“, operating only during periods of excessive demand on the electric grid, during summer months.

New York State’s Governor, Andrew Cuomo, has stated that all coal-power plants will be shut down by 2020.

Cayuga Power Plant in Lansing, NY.

Nonetheless, the plant owners are pushing to re-power the Cayuga Power Plant with natural gas. Currently, however, there is no pipeline to deliver the gas to the plant.  Without support by the public nor the Public Service Commission for the construction of a supply pipeline, Cayuga Power Plant has revealed they plan to receive gas deliveries via truck.

Scenario Maps

FracTracker has modeled the five most likely scenarios that would take compressed natural gas from a loading station in northern Pennsylvania to the Cayuga Power Plant in Lansing. All of the scenarios bring the trucks through populated communities, in dangerous proximity to high-risk facilities where both human safety and evacuations are problematic. The routes also pass through intersections and road stretches that have some of the highest accident rates in the area.

Route 1: This route passes within a half mile of homes of 36,669 people in the Villages of Lansing, Candor, Spencer, Owego; Towns of Ithaca, Lansing, Newfield, Danby, Candor, Spencer, Tioga, Owego, Vestal; and the City of Ithaca. Within the half-mile evacuation zone of this route, should there be an accident, are:

  • 17 health care facilities
  • 20 day care centers
  • 4 private school
  • 21 public schools

Click on the tabs in the box above to explore the five potential truck routes with maps.

Interactive Map

For a full interactive map of the potential routes for CNG delivery to the Cayuga Power Plant, and the schools, health care facilities, etc. within a half-mile evacuation zone of the routes, view the interactive map below.

View map fullscreen | How FracTracker maps work

A Call for Alternative Energy

Despite the apparent convenience that virtual pipelines present for the fossil fuel industry, they are not the solution the future energy supply needs. Yes, they present an alternative to pipeline transportation — but they also play a disastrous role in continuing our descent into climate chaos caused by increasing greenhouse gas concentrations in the atmosphere.

Methane leakage is an unavoidable component of the entire life cycle of natural gas usage — from “cradle to grave” — or more precisely, from the moment a well is drilled to when the gas is combusted by its end-user. And methane, as a greenhouse gas, is up to 100 times more potent than carbon dioxide. The Intergovernmental Panel on Climate Change’s (IPCC) recent report (see summary here) is unflinching in its clarion call for immediate, and extreme, cut-backs in greenhouse gas production. If we choose not to heed this call, much of humanity’s future survival is called into question.


By Karen Edelstein, Eastern Program Coordinator, FracTracker Alliance

More of the details about the Cayuga Power Plant will be explained in the upcoming weeks in a related guest blog by environmental activist and organizer, Irene Weiser, of Tompkins County, NY.

 

 

A map of deficiencies along the Falcon Pipeline Route

The Falcon Pipeline: Technical Deficiencies

Part of the Falcon Public EIA Project

In August 2016, Shell announced plans for the “Falcon Ethane Pipeline System,” a 97-mile pipeline network intended to feed Shell’s ethane cracker facility in Beaver County, Pennsylvania. In response to available data, FracTracker launched the Falcon Public EIA Project in January of 2018 to unearth the environmental and public health impacts of the proposed pipeline. As part of that project, today we explore Shell’s Chapter 105 application and the deficiencies the Pennsylvania Department of Environmental Protection (DEP) cited after reviewing Shell’s application.

Just a heads up… there are a lot.

Shell originally submitted a Chapter 105 application to the DEP to receive a permit for water obstruction and encroachment. The DEP began reviewing the application in January of 2018. On June 1st, they sent Shell technical deficiency letters listing several issues with the application. Shell responded to these deficiencies on August 1st.

Now, it’s up to the DEP to decide if Shell’s response is adequate, and if the department should go ahead and approve the application or require more work from Shell. Explore the technical deficiencies below for more information.

Technical Deficiencies

Below is a map that highlights several of the deficiencies the DEP found with Shell’s application and a brief explanation of each one. Expand the map full-screen to explore more layers – Some layers only become visible when you zoom in due to the level of detail they display.

View Map Full Screen | How Our Maps Work

Next, we’ll walk you through the technical deficiencies, which we have broken down into the following categories:

  1. Wetlands, rivers, streams
  2. Stormwater control
  3. Public health and safety (drinking water & trails)
  4. Conservation areas
  5. Alternative routes
  6. Geological concerns (including mining issues)
  7. Documentation issues
Legend

A = Allegheny County, B = Beaver County, W = Washington County. The numbers reference the number listed in the deficiencies letter.

1. Wetlands, Rivers, & Streams

Water withdrawal from rivers and discharge

  • B2 A2 W2 The project will discharge waste water from an industrial activity to a dry swale, surface water, ground water, or an existing sanitary sewer system or separate storm water system. The DEP requested that Shell identify and describe this discharge, as the DEP’s Clean Water Program must authorize discharges. Shell stated that water will be discharged from hydrostatic testing, (which ensures a pipeline can withstand high pressure by pumping water through it to test for leaks), and a PAG-10 permit (needed for hydrostatic test water discharge) was submitted to the DEP July 27, 2018 with the locations of discharge. Drawings of the discharges are in Attachment O. (The locations of the discharges were not included in Shell’s public response to this deficiency.)
  • B33 A31 W31 Shell will be withdrawing water for hydrostatic testing. The DEP asked Shell to explain the intake and discharge methods so the DEP can decide if these should be included as impacts. The DEP also asked Shell to provide the location of intake and discharge. The DEP’s Clean Water Program must authorize discharges. In response, Shell stated that water will be withdrawn from Raccoon Creek and the Ohio River in West Virginia. The specific locations are listed in the PAG-10 permit, submitted to the DEP in July. Drawings of the discharges are included in Attachment O.

Wetlands and Streams

  • B5 A3 W4 The DEP asked Shell to identify the presence of wetlands within the project area that are identified by the US Fish & Wildlife Service’s National Wetlands Inventory (NWI) data system, and provide data on how they may be impacted by the proposed pipeline.  Shell identified one NWI wetland in Beaver County, but did not delineate or provide information on it, due to safety concerns (it’s on a steep cliff). This wetland will be crossed via HDD (horizontal directional drill). In Allegheny County, there is an NWI wetland that Shell also did not provide data on. This wetland was not initially evident, and when staff returned to survey it, the property owner did not let them access the site because they did not want a pipeline on their property. According to Shell, this NWI wetland is not within the “Project’s Limit of Disturbance.” In Washington County, Shell stated that “all of the NWI-mapped wetlands that were determined not to be wetlands have been accounted for in Washington County. These NWI wetlands were all located in an area that had been previously strip-mined and due to mining activities, those wetlands are no longer there. Data were taken for these areas and included… separately as Attachment D.” Also in Washington County is an NWI wetland located above the Panhandle Trail, which Shell determined to be outside of the study area and therefore did not collect data on it. This wetland is not on the map, but Shell did provide this image of it.
  • B6 A4 W5 The DEP requested that Shell match off-line wetland data with sampling point locations from study area maps. In response, Shell placed offline data sheets in the order that they are in Table 3 in the Wetlands Delineation Report and in Table 4 in the Watercourse Delineation Report.
  • B7 A5 W6 Shell needed to discuss the types and conditions of riverine resources that the project impacts. Specifically, how the conditions of these resources relate to their hydrological functions, biogeochemical functions, and habitat attributes. These are discussed under question 7 for Beaver County, question 5 for Allegheny County, and question 6 for Washington County.
  • B8 A6 W7 Shell needed to discuss the types and conditions of wetlands that the project impacts. Specifically, how the conditions of these wetlands contribute to their hydrological functions, biogeochemical functions, and habitat attributes. Shell also needed to discuss impacts to wetlands that will be temporarily impacted, as it previously only discussed wetlands facing permanent impacts. These are discussed under question 8 for Beaver County, question 6 for Allegheny County, and question 7 for Washington County.
  • B9 A7 W8 The DEP asked Shell to evaluate the impact of open cut installation on wetlands with perched water tables and/or confining layers. Perched water tables have an impermeable confining layer (such as clay) between them and the main water table below. If open cut methods are used, the confining layer is destroyed and this water table will be lost. In Beaver County, Shell identified one wetland (W-PA-170222-MRK-002) will be open cut. If it is perched, Shell states it will replace the confining layer “along the same horizon during pipeline backfilling, and then [compact the layer] so that hydrology may be maintained.” Shell will also put trench plugs “on either side of the wetland on the ROW to prevent water from migrating out on the sides.” In Allegheny County, there are three wetlands potentially on perched water tables that will be open cut: W-PA-160401-MRK-006, W-PA-161220-MRK-001, and W-PA-161220-MRK-002.In Washington County, there are three wetlands potentially on perched water tables that will be open cut: W-PA-160407-JLK-002, W-PA-151203-MRK-005, and W-PA-151203-MRK-006.
  • A11 The DEP asked Shell to evaluate if any wetlands can be classified as “exceptional value” due to their proximity to nesting areas of the northern harrier (a threatened species in Pennsylvania). Wetlands are exceptional value if they serve as habitat for threatened or endangered species, or if they are hydrologically connected to or located within 0.5 miles of wetlands that maintain habitat for the species in the wetland. Shell determined that there are six wetlands that could be nesting areas for northern harriers, and therefore are exceptional value (W-PA-170207-MRK-002, W-PA-161205-WRA-001, W-PA-170207-MRK-003, W-PA-170207-MRK-001, W-PA-170113-MRK-008, W-PA-170113-MRK-001). Three of these wetlands are within the project’s LOD (W-PA-170207-MRK-002, W-PA-161205-WRA-001, W-PA-170207-MRK-003).
  • B13 A10 W11 The DEP asked Shell to evaluate whether the proposed Falcon Pipeline will impact wetlands that are of “exceptional value” based on their proximity to public water systems. Wetlands can be considered “exceptional value” if they are located along public or private drinking water supplies (surface or ground water), and help maintain the quality or quantity of the supply. Shell stated that the (potentially man made) ponds near public water supply A could be considered exceptional value, however, they are located outside of the project’s study area and were not delineated, therefore Shell does not have information on them or their impact to this well. There were no other wetlands Shell considered to be exceptional value based on their proximity to public water systems.
  • B21 There were two protected plant species- harbinger of spring (PA threatened) and purple rocket (PA endangered)- located within the Raccoon Creek floodplain. The DEP asked Shell to evaluate whether there are wetlands in the project area that should be considered “exceptional value” due to their proximity to these species. Wetlands are considered “exceptional value” if they serve as habitat for a threatened or endangered plant or animal species. They are also exceptional value if they are hydrologically connected to or located within 0.5 miles of wetlands that maintain the habitat of the species. There are six wetlands near populations of these plant populations: W-PA-151014-MRK-001, W-PA-151013-MRK-002, -003, and -004, W-PA-170407-JLK-001, W-PA151013-MRK-001. However, Shell stated that the harbinger of spring is not dependent on wetland habitat for survival and the species is considered an upland plant species (because it is not listed on Eastern Mountains and Piedmont List or on the National Wetland Plant List).  Purple rocket is listed as a “Facultative Wetland Plant” (FACW) on both lists. However, Shell stated that, “although it is a FACW, this plant is not one that occurs in wetlands,” and the population of purple rocket was found in an upland, disturbed area. Therefore, Shell determined that none of these wetlands are considered exceptional value.
  • B23 A21 W21 Shell needs to assess cumulative impacts to wetlands from the proposed pipeline and other existing projects and potential future projects. These are discussed in the Cumulative Impact Assessment document, Sections 4.1 and 4.2, and Tables B1 and B2.
  • B24 A22 W22 Shell needed to provide an explanation of how it will restore wetlands and streams disturbed during construction. The explanation needed to include information on seed mixes, shrubs, and trees that will restore stream banks and riparian areas.
  • B26 A24 W24 Shell needed to provide a table that lists, describes, and quantifies permanent impacts to wetlands and watercourses. Shell stated that there are no permanent fills associated with the project, but there will be permanent conversion impacts to the following wetlands. They total 10,862 ft2 or 0.25 acres in Beaver County, 5,166 ft2 (0.12 acres) in Allegheny County, and 4971 ft2 (0.11 acres) in Washington County. (W-PA-151013-JLK-005, W-PA-161202-MRK-001, W-PA-160404-MRK-001, W-PA-160412-CBA-004, W-PA-160412-CBA-001, W-PA-161205-WRA-003, W-PA-160401-MRK-005, W-PA-170213-JLK-003, W-PA-160406-MRK-001, W-PA-170413-RCL-005, W-PA-170214-CBA-005.)
  • B27 A25 W25 Shell needed to provide more information on the Neshannock Creek Restoration site, including a master restoration plan for the entire site. This mitigation is required to offset conversion impacts to wetlands along the pipeline route. The plan for the site is documented here.
  • B28 A26 W26 Shell needed to provide the location and resource crossing number for the HDDs in PA. They are listed in these tables:

Allegheny County:Table of Resources Falcon Pipeline Crosses by HDD in Allegheny County

Washington County:

Beaver County:

Table of water resources the Falcon pipeline crosses by HDD

2. Stormwater control

  • B3 A1 W1 Shell indicated that the project was in a floodplain project by the Commonwealth, a political subdivision of the commonwealth or a public utility. The DEP asked for an identification of this floodplain project, to which Shell responded that it misunderstood the question and the pipeline will not go through a floodplain project by one of these entities, but rather a floodway. The pipeline will pass many floodways, which are listed in Table 1 in separate documents for Beaver County, Allegheny County, and Washington County.
  • W3 The DEP requested that Shell provide an analysis of impact to Act 167 plans. Act 167 requires counties to create stormwater management plans and municipalities to adopt ordinances to regulate development in accordance with these plans. The pipeline route occurs in areas with Act 167 plans in Chartiers Township, Mount Pleasant Township, and Robinson Township.

3. Public health and safety

  • B1 The proposed pipeline does not meet the provisions of a zoning ordinance or have zoning approval in a particular area. Specifically, in Independence Township, the pipeline is within setback distances of places of congregation and/or of residences. One example is the Beaver County Conservation District, considered a place of congregation. Shell responded to this deficiency, saying it is working with Independence Township to obtain necessary approvals, and the township will “officially remove the pipeline ordinance from their records and no variances or permits will be required.”
  • B10 A8 W9 The DEP requested that Shell evaluate and discuss how the pipeline may impact public water systems that are within 1 mile of the pipeline route. Shell located 12 sites within a mile, most of which are ground water wells. One site is the Ambridge Water Authority, which provides drinking water for an estimated 30,000 people. Shell stated that impacts “might include an Inadvertent Return (IR) causing a bentonite slurry mix to enter the supply, which might contaminate the supply for any wells that are located near an HDD site or construction equipment.” Shell stated that all wells are a minimum of 1000 feet outside construction zones and built in thick bedrock which will minimize threat on contamination. The sites within 1 mile include:
    • Youthtowne Barn
    • Beaver County Conservation District
    • Independence Elementary School
    • Independence Volunteer Fire Department
    • McConnell’s Farm and Market, Inc
    • Ambridge Water Authority- Independence Township
    • Ambridge Water Authority- Raccoon Township
    • Hookstown Free Methodist Church
    • Hookstown Fair
    • Hookstown Grange
    • South Side Memorial Post 952
    • Jack’s Diner
    • NOVA Chemical, Inc
  • B11 A9 W10 The DEP asked Shell to discuss efforts to avoid/minimize impacts to the above public water systems, and suggested that efforts “might include, but are not limited to, considering alternative locations, routings or design for the proposed pipeline; providing provisions for shut-off in the event of break or rupture; etc.” Shell stated that the route avoids direct impacts to groundwater wells and surface water intake. Shell will provide water buffalos if wells are contaminated, and drill new wells if necessary. There are mainline valves approximately 7 to 7.5 miles apart that can automatically shut off the flow of ethane. There will also be staff living within the project area that can quickly respond to issues.
  • B12 The pipeline crosses headwaters of the Ambridge Reservoir and the Reservoir’s raw water service pipeline, which supplies water to 30,000 residents. The DEP noted significant public concern regarding this crossing, and asked Shell to evaluate and discuss the pipeline’s potential to affect the Reservoir and public water supply service. The DEP also asked Shell to elaborate on efforts to avoid/minimize impacts, and what measures will be implemented to mitigate any unavoidable impacts. In response, Shell stated the pipeline will cross the raw water line via an HDD  31 feet below the line. Shell explained that the water service line is made of pre-stressed concrete, which cannot be retrofitted in the field if a break occurs. It can take six weeks for pipe joints to be made and delivered from Ohio if there is a rupture. Shell stated it will supply extra pipe joints so the Ambridge Water Authority can have pieces on deck in case of a break. Shell also outlined the protective coatings and design of the HDD portion of the pipeline that will cross the water line, and said valves that can shut off the pipeline are located 2.4 miles from one side of the water line and 3.5 on the other.
  • A17 W17 The DEP asked Shell to consider the proposed pipeline’s effect on the Montour Trail, a multi-use, recreational trail, and to consider re-routes that would avoid impacts to the Trail. Shell determined that routing around the trail is not feasible. Shell will use conventional bore or HDD methods. If the trail needs to be temporarily closed during construction, operation, or maintenance, Shell will notify the trail owner and provide alternate temporary access for trail users. Shell will also cross the Panhandle Trail by HDD. The entrance and exit sights of the bore will not be on the trail’s property. Shell has “unlimited ingress and egress over Owners property” for inspections, repair and maintenance of the pipeline, and in case of emergency situations.
  • B29 A27 W27 Shell needed to revise the “Shell Pipeline HDD Procedure” to include HDD site feasibility analysis, inadvertent return risk assessment, water supply protection, agency contact information, etc. Shell’s response is included in the document, Inadvertent Returns from HDD: Assessment, Preparedness, Prevention and Response Plan.
  • B30 A28 W28 Shell needed to include a preboring geologic evaluation to determine if drinking water supplies will be impacted around boring locations. Shell also needed to discuss how it will verify that drinking water sources and aquifers are protected and what measures will be taken in the event that they are impacted. Shell’s response is included as Appendix C to this document.

4. Conservation

  • B19 A18 W18 19A 19W – There are many areas important for the region’s biodiversity and natural heritage that the proposed pipeline passes near or through. The DEP asked Shell to evaluate impacts to these areas. Information on them is available from the Pennsylvania Natural Heritage Program. They include:
    • Ambridge Reservoir Valleys Natural Heritage Area
    • Lower Raccoon Creek Natural Heritage Area
    • Raccoon Creek Valley and Wildflower Reserve Natural Heritage Area
    • Raccoon Creek Floodplain Biologically Diverse Area
    • Raccoon Creek Landscape Conservation Area
    • Clinton Wetlands Biologically Diverse Area
    • Raccoon Creek Landscape Conservation Area
    • Raccoon Creek Valley & State Park Important Bird Area – Regarding the Important Bird Area, Shell stated that 23 miles of the pipeline is located within this area. Shell has not been able to get in contact with the National Audobon SW PA office. Shell added that the only waterbody large enough in the project area to support the documented waterfowl is the open water at Beaver County Conservation District. Shell stated that “an outlet has been installed at the far end of the lake to restore it to more of a wetland and less of a lake, as it was originally designed.Raccoon Creek Valley is also a passageway for migratory birds, which are protected under the Migratory Bird Treaty Act. Shell stated that less than 2% of this Important Bird Area will be permanently impacted by pipeline construction and installation.

5. Alternative locations

  • B17 A15 W15 The DEP asked Shell to revise its current alternatives and provide a more detailed “analysis of the alternative locations and routes that were considered to avoid or minimize adverse environmental impacts.” The alternatives are discussed in Section 9 of Shell’s Comprehensive Environmental Assessment.
  • B18 16A 16W According to the DEP, “18.5 of the 45 miles (41%) of the proposed pipeline are parallel to or adjacent to existing right-of-ways (ROWs).” The DEP asked Shell to see if there are additional opportunities to build the pipeline within existing ROWs, with the hope of reducing environmental impacts. In response, Shell discussed the additional ROWs that were considered (along Mariner West) but ultimately rejected. Shell discusses these routes more in Section 9.1 of the Comprehensive Environmental Assessment.
  • B32 A30 W30 The DEP asked Shell to discuss the feasibility of several changes to the proposed pipeline’s route, including avoiding impacts to wetlands, relocating resource crossings, moving valve sites outside of wetlands, moving HDD locations, and evaluating the impact to a coal refuse pile (the pipeline crosses underneath at least one pile via HDD). These reroutes are discussed under question 32 for Beaver County, question 30 for Allegheny County, and question 30 for Washington County.

6. Geological concerns

  • B14 12A 12W The pipeline is located in previously coal mined areas. The DEP asked Shell to provide a map of the pipeline that showed these mining areas, and GIS shape files with this information. Shell’s response is included in the HDD Subsurface Investigation Reports, which includes the following table of the extent of mined areas along the pipeline route:
  • B15 A13 W13 The pipeline is located in coal mined areas, which could be susceptible to subsidence and/or mine water discharge. The DEP requested that Shell revise drawings to show the limits of previously mined areas, depth of cover over the mine workings in areas the proposed pipeline crosses through, and the distance between mine workings and the proposed pipeline. Furthermore, the DEP asked Shell to “evaluate and discuss the potential for a subsidence event compromising the utility line, and the potential to create a mine water discharge.” Shell discusses this in Appendix B of this this document and in the Mining Summary Report. Shell also identifies the following areas as being at risk for coal mine discharge: HOU MM 1.2, HOU MM 8.9 (proposed HDD), HOU MM 12.1, HOU MM 12.95, HOU MM 13.1, HOU MM 13.6, HOU MM 17.4, and HOU MM 17.65 (proposed HDD).
  • B16 A14 14W The DEP requested that Shell include areas where the pipeline will cross active mining permit boundaries. There is one active mining permit boundary that intersects the proposed pipeline, the Rosebud Mine in Beaver County.
  • B31 A29 W29 Shell needed to evaluate the potential for the project to encounter areas underlain by carbonate bedrock and landslide prone areas. Carbonate bedrock is indicative of a karst landscape, meaning an area likely to have underground sinkholes and caves. The DEP also asked Shell to discuss precautionary methods taken during construction in these areas. Shell’s response is included in the Carbonate Rock Analysis and Slope Stability and Investigation Report. The Carbonate Rock Analysis report shows that carbonate bedrock was encountered in 20 out of 40 of the borings taken during the analysis.

7. Documentation

  • B4 The PA DEP asked Shell to describe the structures and activities that occur within junction sites. Shell responded that there will be a Junction Custody Transfer Meter Station at the site, and provided maps of the site.
  • B22 20A 20w The DEP requested that Shell revise their Comprehensive Environmental Assessment to include alternatives, impacts, and mitigation items that were previously included in other sections of their environmental assessment.
  • B25 A23 W23 The DEP asked Shell to provide a copy of the Mitigation Bank Credit Availability Letter from First Pennsylvania Resource, LLC. In response, Shell stated the Letter is no longer needed because “the permanent stream and wetland fills have been removed from this project.”
  • B34 A32 W32 The DEP asked Shell to include a copy of the Preparedness, Prevention, and Contingency Plan.
  • B35 A33 W33 Shell needs to include all of the above modifications to the application in the Chapter 103 permit application.

Conclusion

As evidenced by the list above, the proposed Falcon Pipeline poses a variety of threats to Pennsylvania’s natural resources, wildlife, and public health – but this deficiencies list is likely not complete. The pipeline also passes through West Virginia and Ohio, and if completed, will likely attract more pipelines to the area. As it feeds Shell’s ethane cracker plant in Beaver County, it is a major step towards the region becoming a hub for plastic manufacturing. Therefore, the public response to the above deficiencies and the decision the DEP makes regarding them will have major implications for the Ohio River Valley’s future.

Of note: The DEP’s letters and Shell’s response to them are available to the public in separate documents for  Allegheny, Beaver, and Washington Counties. 


By Erica Jackson, Community Outreach and Communications Specialist