A complete list of all FracTracker posts.

Permitting New Oil and Gas Wells Under the Newsom Administration

California regulators approve surge in well permits

FracTracker Alliance and Consumer Watchdog have uncovered new data showing an increase in oil and gas permitting by California regulators in 2019 compared to 2018, calling into question Governor Newsom’s climate commitment. Even more concerning, this investigation found that state regulators are heavily invested in the oil companies they regulate.

FracTracker Alliance’s new report with Consumer Watchdog compares oil and gas permitting policies of the current Governor Gavin Newsom’s administration with that of former Governor Jerry Brown’s administration.

The former lieutenant governor to Brown, Governor Newsom has set out to make a name for himself. As part of stepping out of Brown’s shadow, Newsom has expressed support for a Just Transition away from fossil fuels. Governor Newsom’s 2020 budget plan includes environmental justice measures and an unprecedented investment to plan for this transition that includes investments in job training.

Yet five months into Governor Newsom’s first term, regulators are on track to allow companies to drill and “frack” more new oil and gas wells than Brown allowed in 2018. The question now is: will Governor Newsom actually take the next step that Brown could not, and prioritize the reduction of oil extraction in California?

In addition, the Consumer Watchdog report reveals that eight California regulators with the Division of Oil, Gas, and Geothermal Resources (DOGGR) are heavily invested in the oil companies they regulate. FracTracker and Consumer Watchdog are calling for the the removal of DOGGR officials with conflicts of interest, and an immediate freeze on new well approval. Read the letter to Governor Newsom here.

Governor Brown’s Legacy

Around the world, Brown is recognized as a climate warrior. His support of solar energy technology and criticisms of the nuclear and fossil fuel industry was ultimately unique in the late 1970’s.

In 1980, during his second term as Governor and short presidential campaign, he decried that fellow democrat and incumbent President Jimmy Carter had made a “Faustian bargain” with the oil industry. Since then, he has continued to push for state controls on greenhouse gas emissions. To end his political career, Brown hosted an epic climate summit in San Francisco, California, which brought together climate leaders, politicians, and scientists from around the world.

While Brown championed the reduction of greenhouse gas emissions, his policies in California were contradictory. While front-line communities called for setbacks from schools, playgrounds, hospitals and other sensitive receptors, Brown ignored these requests. Instead he sought to spur oil production in the state. Brown even used state funds to explore his private properties for oil and mineral resources that could be exploited for personal profit.

Brown’s terms in the Governor’s office show trends of increasing oil and gas production. The chart in Figure 1 shows that during his first term (1979-1983), California oil extraction grew towards a peak in production. Then in 2011 at the start of Brown’s second term (2011-2019), crude oil production again inflected and continued to increase through 2015, ending a 25-year period of relatively consistent reduction.

We are therefore interested in looking at existing data to understand if moving forward, Governor Newsom will continue Brown’s legacy of support for California oil production. We start by looking at the first half of 2019, the beginning of Governor Newsom’s term, to see if his administration will also allow the oil and gas industry to increase extraction in California.

Figure 1. Chart of California’s historic oil production, from the EIA

Analysis

The FracTracker Alliance has collaborated with the non-profit Consumer Watchdog to review records of oil and gas well permits issued in 2018 and thus far into 2019.

Records of approved permits were obtained from the CA Department of Conservation’s Division of Oil Gas and Geothermal Resources (DOGGR). Weekly summaries of approved permits for the 52 weeks of 2018 and the first 22 weeks of 2019 (January 1st-June 3rd) were compiled, cleaned, and analyzed. Notices of well stimulations were also included in this analysis. The data is mapped here in the Consumer Watchdog report, as well as in more detail below in the map in Figure 2.

Figure 2. Map of California’s Permits, 2018 and 2019

View map fullscreen | How FracTracker maps work

Findings

At FracTracker, we are known for more than simply mapping, so we have, of course, extracted all the information that we can from this data. The dataset of DOGGR permits included details on the type of permit as well as when, where, and who the permits were granted. With this information we were able to answer several questions.

Of particular note and worthy of prefacing the data analysis was the observation of the very low numbers of permits granted in the LA Basin and Southern California, as compared to the Central Valley and Central Coast of California.

First, what are the types of permits issued?

Regulators require operators to apply for permits for a number of activities at well sites. This dataset includes permits to drill wells, including re-drilling existing wells, permits to rework existing wells, and permits to “sidetrack”. Well stimulations using techniques such as hydraulic fracturing and acid fracturing also require permits, as outline in CA State Bill 4.

How many permits have regulators issued?

In 2018, DOGGR approved 4,368 permits, including 2,124 permits to drill wells. In 2019, DOGGR approved 2,366 permits from January 1 – June 3, including 1,212 permits to drill wells. At that rate, DOGGR will approve 5,607 total permits by the end of 2019, including 2,872 wells.

That is an increase of 28.3% for total permits and an increase of 35.3% for drilling oil and gas wells.

DOGGR also issued 222 permits for well stimulations in 2018. So far in 2019, DOGGR has issued 191 permits for well stimulations, an increase of 103.2%.

Who is applying for permits?

As shown in Table 1 below, the operators Chevron U.S.A. Inc., Aera Energy LLC ( a joint conglomerate of Shell Oil Company and ExxonMobil), and Berry Petroleum Company, LLC dominate the drilling permit counts for both 2018 and 2019.

Aera has obtained the most drilling permits thus far into 2019, while Chevron obtained the most permits in 2018, almost 100 more than Aera. In 2019, Chevron was issued almost 3 times the amount of rework permits as Aera, and both have outpaced Berry Petroleum.

Table 1. Permit Counts by Operator

Where are the permits being issued?

Data presented in Table 2 indicate which fields are being targeted for drilling and rework permits. While the 2019 data represents less than half the year, the number of drilling permits is almost equal to the total drilling permit count for 2018.

Majority players in the Midway-Sunset field are Berry Petroleum and Chevron. South Belridge is dominated by Aera Energy and Berry Petroleum. The Cymric field is mostly Chevron and Aera Energy; McKittrick is mostly Area Energy and Berry Petroleum. The Kern River field, which has by far the most reworks (most likely due to its massive size and age) is entirely Chevron.

Table 2. Permit Counts by Field

Conclusions

Be sure to also read the Consumer Watchdog report on FracTracker’s permit data!

The details of this analysis show that DOGGR has allowed for a modest increase in permits for oil and gas wells in 2019. The increase in well stimulations in 2019 is estimated to be larger, at 103.2%.

There was the consideration that this could be a seasonal phenomenon since we extrapolated from data encompassing just less than the first half of the year. But upon reviewing data for several other years, that does not seem to be the case. The general trend was instead increasing numbers of permits as each year progresses, with smaller permit counts through the first half of the year.

Oil prices do not provide much explanation either. The chart in Figure 3 shows that crude prices were higher in 2018 than they have been for the vast majority of 2019. The increase in permits could be the result of oil and gas operators like Chevron and Aera anticipating a stricter regulatory climate under Governor Newsom. Operators may be securing  as many permits as possible, while DOGGR is still liberally issuing them. This could be a consequence of the Governor’s recognition of the need for California to begin a managed decline of fossil fuel production and end oil drilling in California.

Could this be an early industry death rattle?

Figure 3. Crude prices in 2018 and 2019

July 12, 2019 Update: Governor Gavin Newsom has reacted swiftly to the report by Consumer Watchdog and FracTracker regarding findings of conflicts of interest within DOGGR and the quickening rate of well permitting, by firing California’s top oil and gas regulator Ken Harris.
Newsom’s chief of staff Ann O’Leary also requested other changes to California’s Department of Conservation. O’Leary stated:
“The Governor has long held concerns about fracking and its impacts on Californians and our environment, and knows that ultimately California and our global partners will need to transition away from oil and gas extraction. In the weeks ahead, our office will work with you to find new leadership of (the division) that share this point of view and can run the division accordingly.”

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance

Mapping the Petrochemical Build-Out Along the Ohio River

New maps show the build-out of oil and gas infrastructure that converts the upper Ohio River Valley’s fracked gas into petrochemical products

In 2004, Range Resources purchased land in Washington County, Pennsylvania and “fracked” the first well in the Marcellus Shale, opening the flood gates to a wave of natural gas development.

Since then, oil and gas companies have fracked thousands of wells in the upper Ohio River Valley, from the river’s headwaters in Pennsylvania, through Ohio and West Virginia, and into Kentucky.

Industry sold natural gas as a “bridge fuel” to renewable energy, but 15 years since the first fracked Marcellus well, it’s clear that natural gas is more of a barrier than a bridge. In fact, oil and gas companies are not bridging towards clean energy at all, but rather investing in the petrochemical industry- which converts fracked gas into plastic.

This article dives into the expanding oil, gas, and petrochemical industry in the Ohio River Valley, with six maps and over 16,000 data points detailing the build-out of polluting infrastructure required to make plastic and other petrochemical products from fossil fuels.

Fracking for plastic

The petrochemical industry is expanding rapidly, with $164 billion planned for new infrastructure in the United States alone. Much of the build-out involves expanding the nation’s current petrochemical hub in the Gulf Coast, yet industry is also eager to build a second petrochemical hub in the Ohio River Valley.

The shale rock below the Ohio River Valley releases more than methane gas used for energy. Fracked wells also extract natural gas liquids (NGLs) which the petrochemical industry manufactures into products such as plastic and resins. Investing in the petrochemical industry is one way to capitalize on gases that would otherwise be released to the atmosphere via venting and flaring. As companies continue to spend billions more on drilling than they’re bringing in, many are looking towards NGLs as their saving grace.

These maps look at a two-county radius along the upper Ohio River where industry is most heavily concentrated.

Step 1. Extraction

The petrochemical lifecycle begins at the well, and there are a lot of wells in the Ohio River Valley. The majority of the natural gas produced here is extracted from the Marcellus and Utica Shale plays, which also contain “wet gas,” or NGLs, such as ethane, propane, and butane.

Rig in Greene County, PA. Photo by Ted Auch.

12,507

active, unconventional wells in the upper Ohio River Valley

Of particular interest to the petrochemical industry is the ethane in the region, which can be “cracked” into ethylene at high temperatures and converted into polyethylene, the most common type of plastic. The Department of Energy predicts that production of ethylene from ethane in the Appalachian Basin will reach 640,000 barrels a day by 2025 – that’s 20 times the amount produced in 2013.

In our first map, we attempted to show only active and unconventional (fracked) wells, a difficult task as states do not have a uniform definition for “unconventional” or “active.” As such, we used different criteria for each state, detailed below.

This map shows 12,660 wells, including:

  • 12,507 shale oil and gas wells:
    • 5,033 wells designated as “active” and “unconventional” in Pennsylvania
    • 2,971 wells designated as “drilled,” “permitted,” or “producing,” and are drilled in the Utica-Point Pleasant and Marcellus Shale in Ohio
    • 4,269 wells designated as “active” or “drilled” in the Marcellus Shale in West Virginia
    • 234 wells designated as “horizontal” and are not listed as abandoned or plugged in Kentucky
  • 153 Class II injection wells, which are used for the disposal of fracking wastewater
    • 2 in Pennsylvania
    • 101 in Ohio
    • 42 in West Virginia
    • 8 in Kentucky

The map also shows the Marcellus and Utica Shale plays, and a line demarcating the portions of these plays that contain higher quantities of wet gas. These wet gas regions are of particular interest to the petrochemical industry. Finally, the Devonian-Ohio Shale play is visible as you zoom in.



View Map Full Screen | How FracTracker Maps Work

Step 2. Transportation

Burned hillside near Ivy Lane after the Revolution Pipeline Exploded

Site of the Revolution Pipeline explosion. Photo: Darrell Sapp, Post Gazette.

A vast network of pipelines transports the oil and gas from these wells to processing stations, refineries, power plants, businesses, and homes. Some are interstate pipelines passing through the region on their way to domestic and international markets.

A number of controversial pipeline projects cross the Ohio River Valley. Construction of the Mariner East II Pipeline is under criminal investigation, the Revolution Pipeline exploded six days after it came on line, protesters are blocking the construction of the Mountain Valley Pipeline, and the Atlantic Coast Pipeline is in the Supreme Court over permits to cross the Appalachian Trail.

Accurate pipeline data is not typically provided to the public, ostensibly for national security reasons.  The result of this lack of transparency is that residents along the route are often unaware of the infrastructure, or whether or not they might live in harm’s way. While pipeline data has improved in recent years, much of the pipeline data that exists remains inaccurate. In general, if a route is composed of very straight segments throughout the rolling hills of the Upper Ohio River Valley, it is likely to be highly generalized.

The pipeline map below includes:

  • natural gas interstate and intrastate pipelines
  • 8 natural gas liquid pipelines
  • 7 petroleum product pipelines
  • 3 crude oil pipelines
  • 18 pipeline projects that are planned or under construction for the region, including 15 natural gas pipelines and 3 natural gas liquids pipelines. To view a spreadsheet of these pipelines, click here.



View Map Full Screen | How FracTracker Maps Work

Step 3. Oil and Gas Transport and Processing

Pipelines transport oil and the natural gas stream to an array of facilities. Compressor stations and pumping stations aid the movement of the products through pipelines, while processing stations separate out the natural gas stream into its different components, including NGLs, methane, and various impurities.

At this step, a portion of the extracted fossil fuels are converted into sources of energy: power plants can use the methane from the natural gas stream to produce electricity and heat, and oil refineries transform crude oil into products such as gasoline, diesel fuel, or jet fuel.

A separate portion of the fuels will continue down the petrochemical path to be converted into products such as plastics and resins. Additionally, a significant portion of extracted natural gas leaks unintentionally as “fugitive emissions” (an estimated 2-3%) or is intentionally vented into the atmosphere when production exceeds demand.

This map shows 756 facilities, including:

  • 29 petroleum and natural gas power plants
    • 3 electric utilities
    • 24 independent power producers
    • 1 industrial combined heat and power (CHP) plant
    • 1 industrial power producer (non CHP)
  • 10 pumping stations, which assist in the transmission of petroleum products in pipelines
  • 645 compressor stations to push natural gas through pipelines
  • 21 gas processing plants which separate out NGLs, methane, and various impurities from the natural gas stream
  • 46 petroleum terminals, which are storage facilities for crude and refined petroleum products, often adjacent to intermodal transit networks
  • 3 oil refineries, which convert crude oil into a variety of petroleum-based products, ranging from gasoline to fertilizer to plastics
  • 2 petroleum ports, which are maritime ports that process more than 200 short tons (400,000 pounds) of petroleum products per year

*A small portion of these facilities are proposed or in construction, but not yet built. Click on the facilities for more information. 



View map full screen | How FracTracker Maps Work

Step 4. Storage

After natural gas is extracted from underground, transported via pipeline, and separated into dry gas (methane) and wet gas (NGLs), its components are often pumped back underground for storage. With the expansion of the petrochemical industry, companies are eager to find opportunities for NGL storage.

Underground storage offers a steady supply for petrochemical manufacturers and allows industry to adapt to fluctuations in demand. A study out of West Virginia University identified three different types of NGL storage opportunities along the Ohio and Kanawha River valleys:

  1. Mined-rock cavern: Companies can mine caverns in formations of limestone, dolomite, or sandstone. This study focused on caverns in formations of Greenbrier Limestone.
  2. Salt cavern: Developing caverns in salt formations involves injecting water underground to create a void, and then pumping NGLs into the cavern.
  3. Gas field: NGLs can also be stored in natural gas fields or depleted gas fields in underground sandstone reservoirs.

Above-ground tanks offer a fourth storage option.

Natural gas and NGL storage contains many risks. These substances are highly flammable, and accidents or leaks can be fatal. A historically industrialized region, the Ohio River Valley is full of coal mines, pipelines, and wells (including abandoned wells with unknown locations). All of this infrastructure creates passages for NGLs to leak and can cause the land above them to collapse. As many of these storage options are beneath the Ohio River, a drinking water supply for over 5 million people, any leak could have catastrophic consequences.

Furthermore, there are natural characteristics that make the geology unsuitable for underground storage, such as karst geological formations, prone to sinkholes and caves.

Notable Storage Projects

Appalachia Development Group LLC is heading the development of the Appalachia Storage & Trading Hub initiative, “a regional network of transportation, storage and trading of Natural Gas Liquids and chemical intermediates.” The company has not announced the specific location for the project’s storage component. Funding for this project is the subject of national debate; the company applied for a loan guarantee through a federal clean energy program, in a move that may be blocked by Congress.

Energy Storage Ventures LLC plans to construct the Mountaineer NGL Storage facility near Clarington, Ohio along the Ohio River. This facility involves salt cavern storage for propane, ethane, and butane. To supply the facility, the company plans to build three pipelines beneath the Ohio River: two pipelines (one for ethane and one for propane and butane) would deliver NGLs to the site from Blue Racer Natrium processing plant. A third pipeline would take salt brine water from the caverns to the Marshall County chlorine plant (currently owned by Westlake Chemical Corp).

The storage map below shows potential NGL storage sites to feed petrochemical infrastructure as well as natural gas storage for energy production:



View Map Full Screen | How FracTracker Maps Work

Step 5. Petrochemical Manufacturing

While conventional oil and gas extraction has occurred in the region for decades, and fracking for 15 years, the recent petrochemical build-out adds an additional environmental and health burdens to the Ohio River Valley. Our final map represents the facilities located “downstream” in the petrochemical process which convert fossil fuels into petrochemical products.

An image of plastic pellets

Polyethylene pellets, also called nurdles, manufactured by ethane crackers. Image source.

Ethane Crackers

Much of the petrochemical build-out revolves around ethane crackers, which convert ethane from fracked wells into small, polyethylene plastic pellets. They rely on a regional network of fracking, pipelines, compressor stations, processing stations, and storage to operate.

In 2017, Royal Dutch Shell began construction on the first ethane cracker to be built outside of the Gulf Coast in 20 years. Located in Beaver County, Pennsylvania, this plant is expected to produce 1.6 million tons of polyethylene plastic pellets per year. In the process, it will release an annual 2.2 million tons of carbon dioxide (CO2).

A second ethane cracker has been permitted in Belmont County, Ohio. Several organizations, including the Sierra Club, Center for Biological Diversity, FreshWater Accountability Project, and Earthworks have filed an appeal against Ohio EPA’s issuance of the air permit for the PTTGC Ethane Cracker.

Shell Ethane Cracker

The Shell Ethane Cracker, under construction in Beaver County, is expected to produce 1.6 million tons of plastic per year. Photo by Ted Auch, aerial assistance provided by LightHawk.

Methanol plants also convert part of the natural gas stream (methane) into feedstock for a petrochemical product (methanol). Methanol is commonly used to make formaldehyde, a component of adhesives, coatings, building materials, and many other products. In addition to methanol plants and ethane crackers, the map below also shows the facilities that make products from feedstocks, such as fertilizer (made from combining natural gas with nitrogen to form ammonia, the basis of nitrogen fertilizer), paints, and of course, plastic.

These facilities were determined by searching the EPA’s database of industrial sites using the North American Industry Classification System (NAICS).

In total, we mapped 61 such facilities:

  • 2 methanol plants (both in construction)
  • 3 ethane crackers (one in construction, one under appeal, and one uncertain project)
  • 12 petrochemical manufacturing facilities (NAICS code 32511)
  • 31 plastic manufacturing facilities
    • 2 plastic bag and pouch manufacturing facilities (NAICS code 326111)
    • 2 plastic packaging materials and unlaminated film and sheet manufacturing facilities (NAICS code 32611)
    • 2 plastic packaging film and sheet (including laminated) manufacturing facilities (NAICS code 326112)
    • 1 unlaminated plastic film and sheet (except packaging) manufacturing facility (NAICS code 326113)
    • 1 unlaminated plastics profile shape manufacturing facility (NAICS code 326121)
    • 2 laminated plastics plate, sheet (except packaging), and shape manufacturing facilities (NAICS code 32613)
    • 21 facilities listed as “all other plastics product manufacturing” (NAICS code 326199)
  • 11 paint and coating manufacturing facilities (NAICS code 325510)
  • 2 nitrogenous fertilizer manufacturing facilities (NAICS code 325311)



View Map Full Screen | How FracTracker Maps Work

Visualizing the Build-Out

How are these facilities all connected? Our final map combines the data above to show the connections between the fossil fuel infrastructure. To avoid data overload, not all of the map’s features appear automatically on the map. To add features, view the map full screen and click the “Layers” tab in the top right tool bar.



View Map Full Screen | How FracTracker Maps Work

A better future for the Valley

The expansion of oil and gas infrastructure, in addition to the downstream facilities listed above, has rapidly increased in the last few years. According to the Environmental Integrity Project, regulatory agencies in these four states have authorized an additional 15,516,958 tons of carbon dioxide equivalents to be emitted from oil and gas infrastructure since 2012. That’s in addition to emissions from older oil and gas infrastructure, wells, and the region’s many coal, steel, and other industrial sites.

View the Environmental Integrity Project’s national map of emission increases here, which also includes permit documents for these new and expanding facilities.

The petrochemical build-out will lock in greenhouse gas emissions and plastic production for decades to come, ignoring increasingly dire warnings about plastic pollution and climate change. A recent report co-authored by FracTracker Alliance found that the greenhouse gas emissions across the plastic lifecycle were equivalent to emissions from 189 coal power plants in 2019 – a number that’s predicted to rise in coming years.

[av_font_icon icon=’ue80e’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

What does the petrochemical build out look like in the Ohio River Valley?

 

But it doesn’t have to be this way. The oil and gas industry’s plan to increase plastic manufacturing capacity is a desperate attempt to stay relevant as fracking companies “hemorrhage cash” and renewable energy operating costs beat out those of fossil fuels. Investing instead in clean energy, a less mechanized and more labor intensive industry, will offer more jobs and economic opportunities that will remain relevant as the world transitions away from fossil fuels.

In fact, the United States already has more jobs in clean energy, energy efficiency, and alternative vehicles than jobs in fossil fuels. It’s time to bring these opportunities to the Ohio River Valley and bust the myth that Appalachian communities must sacrifice their health and natural resources for economic growth.

People gather at the headwaters of the Ohio River to advocate for the sustainable development of the region. Add your voice to the movement advocating for People Over Petro by signing up for the coalition’s email updates today!

Download the maps

 

 

 

 

 

 

 

This data in this article are not exhaustive. FracTracker will be updating these maps as data becomes available.

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance

Urban Drilling in Los Angeles

Impact of a 2,500′ Oil and Gas Well Setback in California

Why does California need setbacks?

A new bill proposed by California State Assembly Member Al Muratsuchi (D), AB345, seeks to establish a minimum setback distance of 2,500′ between oil and gas wells and sensitive sites including occupied dwellings, schools, healthcare facilities, and playgrounds. A setback distance for oil and gas development is necessary from a public health standpoint, as the literature unequivocally shows that oil and gas wells and the associated infrastructure pose a significant risk to the communities that live near them.

FracTracker Alliance conducted a spatial analysis to understand the impact a 2,500’ well setback would have on oil and gas expansion in California. In a previous report, The Sky’s Limit California (Oil Change Internal, 2018), Fractracker data showed that 8,493 active or newly permitted oil and gas wells were located within a 2,500’ buffer of sensitive sites. At the time it was estimated that 850,000 Californians lived within the setback distance of at least one of these oil and gas wells.

This does not bode well for Californians, as a recently published FracTracker literature review found that health impacts resulting from living near oil and gas development include cancer, infant mortality, depression, pneumonia, asthma, skin-related hospitalizations, and other general health symptoms. Studies also showed that health impacts increased with the density of oil and gas development, suggesting that health impacts are dose dependent. Living closer to more oil and gas sites means you are exposed to more health-threatening contamination.

An established setback is therefore necessary to alleviate some of these health burdens carried by the most vulnerable Environmental Justice (EJ) communities. Health assessments by the Los Angeles County Department of Health and studies on ambient air quality near oil fields by Occidental College Researchers support the assumption that 2,500′ is the necessary distance to help alleviate the harsh conditions of degraded air quality. Living at a distance beyond 2,500′ from an oil and gas site does not mean you are not impacted by air and water contamination. Rather the concentrations of contaminants will be less harmful. In fact studies showed that health impacts increased with proximity to oil and gas, with associated impacts potentially experienced by communities living at distances up to 9.3 miles (Currie et al. 2017) and 10 miles (Whitworth et al. 2017).

Assembly Bill 345

This analysis assesses the potential impact of State Assembly member Al Muratsuchi’s Assembly Bill 345 on California’s oil and gas extraction and production. Specifically, AB345 establishes a minimum 2,500’ setback requirement for future oil and gas development. It does not however directly address existing oil and gas permits.

The bill includes the following stipulations and definitions:

  • All new oil and gas development, that is not on federal land, are required to be located at least 2,500′ from residences, schools, childcare facilities, playgrounds, hospitals, or health clinics.
  • In this case the redrilling of a previously plugged and abandoned oil or gas well or other rework operation is to be considered new oil and gas development.
  • “Oil and gas development” means exploration for and drilling production and processing of oil, gas or other gaseous and liquid hydrocarbons; the flowlines; and the treatment of waste associated with that exploration, drilling, production, and processing.
  • “Oil and gas development” also includes hydraulic fracturing and other stimulation activities.
  • “Rework operations” means operations performed in the well bore of an oil or gas well after the well is completed and equipped for production, done for the purpose of securing, restoring, or improving hydrocarbon production in the subsurface interval that is the open to production in the well bore.
  • The bill does not include routine repairs or well maintenance work.

Map

Figure 1. Map of Wells within a 2,500′ Setback Distance from Sensitive Receptor Sites. The map below shows the oil and gas wells and permits that fall within the 2,500′ setback distance from sensitive receptor sites.  Summaries of these well counts and discussions of these well types are included below as well.

Map of Wells within a 2,500′ Setback Distance from Sensitive Receptor Sites

View map fullscreen | How FracTracker maps work

 

Environmental Justice

The California Environmental Justice Alliance (CEJA) has just released their 2018 Environmental Justice Agency Assessment, which used FracTracker’s data and mapping to assess environmental equity in the state regulation of oil permitting and drilling. The report issued the Division of Oil, Gas, and Geothermal Resources (DOGGR) a failing grade of ‘F’. According to the report, “DOGGR is aware that the proposed locations of many drilling activities are in or near EJ communities, but approves permits irrespective of known health and safety risks associated with neighborhood drilling.”

FracTracker’s analysis of low income communities in Kern County shows the following:

  • There are 16,690 active oil and gas production wells located in census blocks with median household incomes of less than 80% of Kern’s area median income (AMI).
  • Therefore about 25% (16,690 out of 67,327 total) of Kern’s oil and gas wells are located within low-income communities.
  • Of these 16,690 wells, 5,364 of them are located within the 2,500′ setback distance from sensitive receptor sites such as schools and hospitals (32%) vs 13.1% for the rest of the state.

For more information on the breakdown of Kern County wells, see our informational table, here.

DOGGR wells

Using freshly published Division of Oil, Gas, and Geothermal Resources (DOGGR) data (6/3/19), we find that there are 9,835 active wells that fall within the 2,500’ setback distance, representing 13.1% of the total 74,775 active wells in the state.

There are 6,558 idle wells that fall within the 2,500’ setback distance, of nearly 30,000 total idle wells in the state. Putting these idle wells back online would be blocked if the wells require reworks to restart or ramp up production. For the most part operators do not intend for most idle wells to come back online. Rather operators are just avoiding the costs of plugging and properly abandoning the wells. To learn more about this issue, see our recent coverage of idle wells here.

Of the 3,783 permitted wells not yet in production, or “new wells,” 298 (7.8%) are located within the 2,500’ buffer zone.

Getting a count of plugged wells within the setback distance is more difficult because there is not a complete dataset, but there are over 30,000 wells in areas with active production that would be blocked from being redrilled. In total there are 122,209 plugged wells listed in the DOGGR database.

Permits

We also looked at permit applications that were approved in 2018, including permits for drilling new wells, well reworks, deepening wells and well sidetracks. This may be the most insightful of all the analyses.

Within the 2018 permit data, we find that 4,369 permits were approved. Of those 518 permits (about 12%) were granted within the proposed 2,500’ setback. Of the permits 25% were for new drilling, 73% were for reworks, and 2% were for deepening existing wells. By county, 42% were in Kern, 24% were in Los Angeles, 14% in Ventura, 6% in Santa Barbara, 3% in Fresno, and 2% or less in Glenn, Monterey, Sutter, San Joaquin, Colusa, Solano, Orange and Tehama, in descending order.

SCAQMD Notices

In LA, Rule 1148.2 requires operators to notify the South Coast Air Quality Management District (SCAQMD) of activities at well sites, including stimulations and reworks. These data points are reiterative of the “permits” discussed above, but the dataset is specific to the SCAQMD and includes additional activities. Of the 1,361 reports made to the air district since the beginning of 2018 through April 1, 2019; 634 (47%) were for wells that would be impacted by the setback distance; 412 incidences were for something other than “well maintenance” of which 348 were for gravel packing, 4 for matrix acidizing, and 65 were for well drilling. We are not sure where gravel packing falls, in reference to AB345.

A major consideration is that this rule may force many active wells into an idle status. If the onus of plugging wells falls on the state, these additional idle wells could be a major liability for the public. Fortunately AB1328 recently defined new idle well rules. The rules entice operators to plug and abandon idle wells. If rule 1328 is effective at reducing the stock of idle wells, these two bills could complement each other. (For more information on idle wells, read FracTracker’s recent analysis, here: http://stg.fractracker.org/2019/04/idle-wells-are-a-major-risk/)

State Bill 4 Well Stimulation Reporting

We also analyzed data reported to DOGGR under the well stimulation requirements of CA State Bill 4 (SB4), the 2013 bill that set a framework for regulating hydraulic fracturing in California. Part of the bill required an independent scientific study to be conducted on oil and gas well stimulation, including acid well stimulation and hydraulic fracturing. Since 2016 operators have been required to secure special permits to stimulate wells, which includes hydraulic fracturing and several other techniques. To learn more about this state regulation read FracTracker’s coverage of SB4. From January 1, 2016 to April 1, 2019, there have been 576 well stimulation treatment permits granted under the SB4 regulations. Only 1 hydraulic fracturing event, permitted in Goleta, would have been impacted by a 2,500’ setback in 2018.

Support for AB345

After being approved by the CA Assembly Natural Resources Committee in a 7-6 vote, the bill did not make it up for a vote in the Senate Appropriations Committee during the 2019 legislative session.  The bill was described by the committee as “promising policies that need more time for discussion.” AB345 is now a two-year bill in the state Senate and will be reconsidered by the committee in January of 2020. The Chairperson of the Appropriations Committee, Lorena Gonzalez, indicated her general support for the policy and committed to working with the author to find a way to move the bill forward at the end of the session.

By Kyle Ferrar, Western Program Coordinator, FracTracker Alliance 

Feature image by David McNew, Getty Images

Pennsylvanians Demand a Response to Rare Cancer Cases, Other Health Impacts

New research on fracking health impacts, combined with unusually high rates of pediatric cancer, sound alarm bells in Pennsylvania

FracTracker isn’t the only one digging deeper into the health impacts of fracking in the past few months. Last week, the Better Path Coalition organized a meeting at the Capitol Building in Harrisburg, Pennsylvania, to share new research with government officials, the press, and the public. These groundbreaking reports highlight the increasing body of evidence showing fracking’s adverse health and climate impacts.

Following the presentations on emerging research, Ned Ketyer, M.D., F.A.A.P, discussed the highly concerning proliferation of rare pediatric cancer cases in southwestern Pennsylvania.

Dr. Ketyer drew data from a report released last month by the Pittsburgh Post Gazette, which uncovered an unusually high number of childhood cancer diagnoses in southwestern Pennsylvania over the last decade. In just four counties (Washington, Greene, Fayette and Westmoreland), there were 27 people diagnosed with Ewing sarcoma, a rare bone cancer, between 2008 and 2018. Six of the 27 people diagnosed were from the Canon-McMillan School District in Washington County, where there are currently 10 students district-wide with other types of cancers.

The expected number of Ewing sarcoma diagnoses over this time period and for the population count of southwestern Pennsylvania would be 0.75 cases per year, or roughly eight cases over the course of a decade. The higher number of rare childhood cancers was the subject of a recent community meeting held by the Southwest Pennsylvania Environmental Health Project (EHP), where residents called on the state to further investigate the issue and take immediate action to eliminate any potential environmental causes. For more of EHP’s resources on this topic, click here.

Cancer in the Marcellus

The Pennsylvania Department of Health investigated three of these cases in Washington County and found that they did not meet the criteria definition of a cancer cluster. Still, the unusually high number of rare cancers over a small geography is cause for alarm and reason to suspect an environmental cause.

This four-county area has a legacy of environmental health hazards associated with coal mining activities and is home to a 40-year old uranium disposal site that sits in close proximity to the Canon-McMillan High School. But with the increase in cancer diagnoses over the past decade, many are looking towards fracking in the Marcellus Shale, the more recent environmental hazard to develop in the region, as a contributing cause.

Southwestern Pennsylvania is a hot spot for fracking activity. In these four counties, there are 3,169 active, producing unconventional gas wells. There are also the infrastructure and activity associated with unconventional development: compressor stations, processing stations (including Pennsylvania’s largest cryogenic plant), disposal sites for radioactive waste, and heavy truck traffic.

The environmental and health risks of these facilities were the focus of the presentations and discussions with Pennsylvania leaders last week.

A map of unconventional gas production in southwest Pennsylvania. Click on the image to open the map.

View map fullscreen | How FracTracker maps work

Call for action

At the culmination of the Harrisburg meeting, participants delivered a letter to Governor Wolf’s office, calling for an investigation into the causes of these childhood cancer cases. Signed by over 900 environmental organizations and individuals, the letter also asks for a suspension of new shale gas permitting until the Department of Health can determine that there is no link between drilling and the cancer outcomes.

Governor Wolf’s response to Karen Feridun, the organizer of this campaign, was a disappointing dismissal of this public health crisis. Stating that the environmental regulations his office has implemented “protect Pennsylvanians from negative environmental and health impacts,” Governor Wolf went on to say that his office “will continue to monitor and study cancer incidents in this area, especially as more data becomes available,” but did not agree to suspend new permitting.

Wolf’s decision to continue with status quo permitting while waiting for more data to become available is unacceptable, and will lead to more Pennsylvanians suffering from the industry’s health impacts.

The Governor’s response is even more disheartening as it follows his recent support for a full ban on fracking activity in the Delaware River Basin (including eastern Pennsylvania). The Governor’s support for the ban is an acknowledgement of the industry’s risks, and leaves us frustrated that the southwestern part of the state is not receiving equal protection.

When is enough evidence enough?

The continued permitting of unconventional wells disregards the scientific evidence of drilling’s harms discussed in Harrisburg.

Sandra Steingraber, Ph.D, of Concerned Health Professionals of New York, discussed the results of the sixth edition of “The Compendium of Scientific, Medical, and Media Findings Demonstrating Risks and Harms of Fracking.” The Compendium outlines the health risks of fracking infrastructure from almost 1,500 peer-reviewed studies and governmental reports. Notably, the report outlines the inherent dangers of fracking and finds that regulations are incapable of protecting public health from the industry.

Erica Jackson discussed FracTracker Alliance’s recently published Categorical Review of Health Reports. This literature review analyzed 142 publications and reports on the health impacts of fracking, and found that 89% contained evidence of an adverse health outcome or health risk associated with proximity to unconventional oil and gas development.

Brian Schwartz, M.D., M.S., the Director of Geisinger Health Institute at the Johns Hopkins Bloomberg School of Public Health, presented epidemiological studies linking unconventional development to increased radon concentrations on homes and health impacts including adverse birth outcomes, mental health disorders, and asthma exacerbations.

Lorne Stockman, Senior Research Analyst with Oil Change International, discussed  “Burning the Gas ‘Bridge Fuel’ Myth,” a new report that further solidifies the irrationality of continued oil and gas development based on its climate impacts. The report shows that greenhouse gas emissions from fracking exceed climate goals, and how perpetuating the myth of natural gas as a “bridge” to renewables locks in emissions for decades.

A welcome ray of hope, this report also proves that renewables are an economically viable replacement to coal and gas, costing less than fossil fuels to build and operate in most markets. Furthermore, renewables combined with increasingly competitive battery storage ensures grid reliability.

“Burden of proof always belongs to the industry”

Among the inundation of data, statistics, and studies, Dr. Steingraber offered a sobering reminder of the purpose behind the meeting:

“Public health is about real people. When we collect data on public health problems, behind every data point, behind every black dot floating on a white mathematical space on a graph captured in a study, there are human lives behind those data points. And when those points each represent the life of a child or a teenager, what the dots represent is terror, unimaginable suffering, followed by death, or terror, unimaginable suffering, followed by a life of trauma, pathology reports, bone scans, medical bills, side effects, and uncertainty that all together are known as cancer survival.”

An adolescent cancer survivor herself, Dr. Steingraber clearly articulated the ethical responsibility our elected officials have to hold industry accountable for its impacts:

“Burden of proof always belongs to the industry, and benefit of the doubt always belongs to the child. It’s wrong to treat children like lab rats and experiment on them until the body count becomes so high that it reaches all the levels of statistical significance that tells you that we have a real problem here.”

The evidence is in – we know enough to justify an end to fracking based on its health and climate impacts. It’s time for Pennsylvania’s industry and leaders to stop experimenting with residents’ health and take immediate action to prevent more suffering.

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance

Production and Location Trends in PA: A Moving Target

The FracTracker Alliance tends to look mostly at the impacts of drilling, from violations affecting surface and ground water to forest fragmentation to neighbors breathing diesel exhaust near disposal wells.  We also try to give residents tools to help predict where future activity will occur, but as this article details, such predictive tools can do little more than trail moving targets. To that end, we have taken a look into areas where gas production is high for unconventional wells in the state, which are likely sites of future development.

The Pennsylvania Department of Environmental Protection’s (DEP) Production Report is self-reported by the various operators active in the state. Unconventional wells generate a large quantity of natural gas, measured in thousands of cubic feet (Mcf), as well as limited amounts of oil and condensate, both of which are measured in 42 gallon barrels. In this analysis, we are only considering the gas production.


Click here for full screen map. 

In the map above, you can click on any well to learn more about the production values, along with a variety of other information including the well’s formation and age.  The age was calculated by counting days from the spud date to the end of the report cycle, March 31, 2019.

 

Top Average Gas Production by County – April 2018 to March 2019

CountyProducing Wells Avg. Production (Mcf) Production Rank Avg. Age of Producing WellsAge Rank
Wyoming 2511,269,15615 Yr / 10 Mo / 4 Days12
Sullivan1281,087,86825 Yr / 2 Mo/ 24 Days8
Allegheny1171,075,01834 yr/ 2 Mo / 7 Days2
Susquehanna1,4291,066,73445 Yr / 6 Mo / 22 Days10
Greene1,131796,75555 yr / 10 Mo / 28 Days13
Figure 1 – This table shows the top five counties in Pennsylvania for per-well unconventional gas production. The final column shows the county ranking for the average age of wells, from youngest to oldest

We can also see this data summarized by county, where average production and age values are available on a county by county basis (see Figure 1). Hydrocarbon wells are known to decrease production steeply over time, a phenomenon known as the decline curve, so it is not surprising to see a relatively young inventory of wells represented in the list of top five counties with per-well gas production. Age is not the only factor in production values, however, as certain geographies simply contain more accessible gas resources than others.

 

Figure 2 – 12 month gas production and age of well. Production is usually much higher during the earliest phases of the well’s production life.  This does not include wells that have been plugged or taken out of production.  Click on image for full-sized view.

In Figure 2, we look at the production of all unconventional wells in the state, expecting to see the highest production in younger wells. This mostly appears to be the case, but as mentioned above, there are also hot and cold spots with respect to production. A notable variable in this consideration is producing formation.

Since 93% (8,730 out of 9,404) of unconventional wells reporting gas production are in the Marcellus Shale Formation, the traditional hot spots in the northeastern and southwestern portions of the state heavily skew the overall totals in terms of both production and number of wells.  Other formations of note include the Onodaga Limestone (137 wells, 1.5% of total), Burket Member (117 wells, 1.2%), Genesee Formation (104 wells, 1.1%), and the Utica Shale (99 wells, 1.1%) (Figure 3).

Figure 3 – Unconventional gas production over 12 months, showing formation. Click on image for full-sized view.

Drillers have been exploring some of these formations for decades. In fact, the oldest producing well that is currently classified as unconventional was 13,435 days old as of March 31, which works out to 36 years, 9 months, and 12 days.

However, this is fairly rare – only 384 (4%) of the 9,404 producing wells were more than 10 years old. 5,981 wells (64%) are between 5 and 10 years old, with the remaining 3,039 wells (32%) younger than 5 years old.

This does not take into account wells of any age that have been plugged or otherwise taken out of production.

Age of Pennsylvania’s active wells

< 5 years old
5-10 years old
> 10 years old

 

Utica Shale

The Utica Shale is worth a special mention here for a couple of reasons.  First, we must acknowledge its prominence in neighboring Ohio, which has 2,160 permitted Utica wells to go with just 40 permitted Marcellus wells, the prevalence of the two plays seems to invert just as one passes over the state line. And yet, the most productive Utica wells are near the border with New York, not Ohio.

In fact, each of the top 11 producing Utica wells during the 12 month period were located in Tioga County.  It’s worth noting that these are all between one and two years old, which would have given the wells time to be drilled, fracked, and brought into production, while still being in the prime of their production life. Compared to the Marcellus, sample size quickly becomes an issue when analyzing the Utica in Pennsylvania (Figure 4).

Figure 4 – Producing Utica wells in Pennsylvania. Note that the cluster of heavily producing wells in Tioga and Potter Counties near the New York border are mostly young wells where higher production would be expected.  Click on image for full sized view.

Second, portions of the Utica are known for their wet gas content, meaning that the gas has significant quantities of natural gas liquids (NGLs) including ethane, propane, and butane, which are gaseous at ambient temperatures but typically condensed into liquid form by oil and gas companies.  These are used for specialized fuels and petrochemical feedstocks, and are therefore more valuable than the methane in natural gas.

The production report does not capture the amount of NGLs in the gas, but a map from the Energy Information Administration shows the entire play, noting that the composition is dryer on the eastern portions of the play. In fact, a wet gas composition along the Ohio border might help to explain continued interest in what are otherwise well below average gas production results for Pennsylvania.

A Moving Target

It is difficult to predict where the industry will focus its attention in the coming months and years, but taking a look at production and formation data can give us a few clues.  Obviously, operators who found a particularly productive pocket of hydrocarbons are likely to keep drilling more holes in the ground in those areas until production is no longer profitable. Therefore, impacts to water, air, and nearby residents can be expected to continue in heavily drilled areas largely because the production level makes it attractive for drillers.

On the other hand, we should not assume that areas that are currently not productive are off the table for future consideration, either. Different formations are productive in different geographies, so a sweet spot for the Marcellus might be a dud in the Utica, or vice versa.

Finally, when comparing production, we must always take the age of the well into consideration, as all oil and gas wells can be expected to start off with a short period of very high production, followed by years of ever-diminishing returns throughout the expected 10 to 11 year lifecycle of the well. Because of this, what seems like a hotspot now may look below average in a similar analysis in three to four years, particularly in formations with relatively light drilling activity. This means that the top list of production by well could change over time, so be sure to check back in with FracTracker to see how events unfold.

By Matt Kelso, Manager of Data and Technology, FracTracker Alliance

 

Who Pays? Health and Economic Impacts of Fracking in Pennsylvania

Since the advent of unconventional shale gas drilling, some effects have been immediate, some have emerged over time, and some are just becoming apparent. Two reports recently published by the Delaware Riverkeeper Network advance our understanding of the breadth of the impacts of fracking in Pennsylvania. The first report, written by FracTracker, reviews research on the ways fracking impacts the health of Pennsylvanians. The second report by ECONorthwest calculates the economic costs of the industry.

“Fracking is heavily impacting Pennsylvania in multiple ways but the burden is not being fairly and openly calculated. These reports reveal the health effects and economic costs of fracking and the astounding burdens people and communities are carrying,” said Maya van Rossum, the Delaware Riverkeeper.

Learn what the latest science and analysis tells us about the costs of fracking, who is paying now, and what the future price is forecasted to be.

Access the full reports here:

 

[av_font_icon icon=’ue84b’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Health Impact Report

“Categorical Review of Health Reports on Unconventional Oil and Gas Development; Impacts in Pennsylvania,”  FracTracker Alliance, 2019 Issue Paper

[av_font_icon icon=’ue84b’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Economic Impact Report

“The Economic Costs of Fracking in Pennsylvania,” ECONorthwest, 2019 Issue Paper
 
 

 

From the Experts

“The FracTracker Alliance conducted a review of the literature studying the impact of unconventional oil and gas on health. Findings of this review show a dramatic increase in the breadth and volume of literature published since 2016, with 89% of the literature reporting that drilling proximity has human health effects. Pennsylvanian communities were the most studied sample populations with 49% of reviewed journal articles focused on Marcellus Shale development. These studies showed health impacts including cancer, infant mortality, depression, pneumonia, asthma, skin-related hospitalizations, and other general health symptoms were correlated with living near unconventional oil and gas development for Pennsylvania and other frontline communities.”

Kyle Ferrar, FracTracker Alliance Western Program Coordinator

 

Rig and house. Westwood Lake Park. Photo by J Williams, 2013.

“Fracking wells have an extensive presence across Pennsylvania’s landscape – 20 percent of residents live within 2 miles of a well. This is close enough to cause adverse health outcomes. Collectively we found annual costs of current fracking activity over $1 billion, with cumulative costs given continued fracking activity over the next 20 years of over $50 billion in net present value for the effects that we can monetize. The regional economic benefits also seem to be less than stated, as the long-term benefits for local economies are quite low, and can disrupt more sustainable and beneficial economic trajectories that might not be available after a community has embraced fracking.”

Mark Buckley, Senior Economist at the natural resource practice at
ECONorthwest

 

These reports on the health effects and economic impacts of unconventional oil and natural gas development yield disheartening results. There are risks of extremely serious health issues for families in impacted areas, and the long term economic returns for communities are negative.

Arming ourselves with knowledge is an important first step towards the renewable energy transformation that is so clearly needed. The stakes are too high to allow the oil and natural gas industries to dictate the physical, social, and economic health of Pennsylvanians.

The Hidden Costs of a Plastic Planet

Plastic has been getting a lot of negative press lately.

It’s killing marine life, forming vortexes in the ocean, and being burned instead of recycled. But until recently, most of the attention has focused on plastic pollution – the waste that turns up after a product has served its purpose.

Now that’s changed- the Center for International Environmental Law (CIEL) has recently released “Hidden Costs of a Plastic Planet;” two reports that show us the consequences of plastic across its entire lifecycle. The first, Plastic & Health, explores human health impacts, while the second Plastic & Climate, tackles greenhouse gas emissions.

For the first time, we know the full scope of plastic’s impact – and it’s not looking good.

FracTracker is proud to partner with CIEL and several other organizations, including Earthworks, 5 Gyres, TEJAS, UPSTREAM, GAIA, Exeter University, and Environmental Integrity Project to release these reports.

Access the full reports and executives summaries here:

 

You know, now what?

These reports make it clear: the impacts of plastic are serious, and they’re everywhere. We have the evidence to justify an immediate global move away from our disposable, single-use lifestyle. Tackling this toxic crisis will require action across all levels of society- corporations must consider the full life cycle of their products, policy makers must enact plastic reduction measures, and of course, industry needs to rectify its toxic impacts. Eager to encourage these entities to take action, the FracTracker team is committed to doing our own part to solve this plastics problem, and we hope that it inspires individuals, companies, community leaders, and politicians to join in.

Here’s what we’re doing to help the world #BreakFreeFromPlastic:

1. Continue working towards a world free from oil and gas.

Since over 99% of plastic is made from oil and gas, keeping fossil fuels in the ground is the only way to eliminate all of plastic’s toxic impacts. Plastic & Climate found that extracting and transporting oil and gas for plastic production releases over 100 million metric tons of carbon dioxide equivalents per year. There are many opportunities for these releases to occur, including from methane leakage and flaring, the drilling process, deforestation of forests for pipelines and well pads, and emissions from truck traffic.

Pipeline construction causes deforestation, releasing carbon stored in trees and preventing further carbon sequestration

The FracTracker team will continue to study, map, and analyze the risks of this industry to encourage both a switch to renewable energy and a movement away from plastic production.

2. Expose the risks of the fracking-driven plastics boom in the Gulf Coast & Ohio River Valley

Unconventional technology has opened up access to large reserves of natural gas liquids, such as ethane, and plastic manufacturing is one way to increase demand for this glut. In fact, the oil and gas industry is hoping to increase demand for plastic worldwide by 40%! Two regions with access to natural gas liquids that are rapidly expanding plastics manufacturing capacity are the Gulf Coast and the Ohio River Valley.

Eager to justify this build-out, politicians and industries tout the ways plastic is part of a sustainable future. They say that without investing in plastic, we’re not taking full advantage of our resources, and that by using natural gas to make plastic instead of burning it, we’re keeping greenhouse gasses from entering the atmosphere. Speaking on manufacturing plastic from natural gas with public radio station WHYY, Pennsylvania’s Governor Wolf stated:

“I want to move to a point where what we’re using the gas for is for products that go into that sustainable energy future: lightweight products…so that we’re not burning this, we’re actually creating products that would make that energy future that we all want, that would address the issues of climate change in an effective way.”

The Shell Ethane Cracker in Pennsylvania is projected to produce 1.6 million tons of plastic per year, which Governor Wolf states is part of a “sustainable energy future.” Photo by Ted Auch, aerial assistance by LightHawk.

But the data say otherwise.

Plastic does not address the issues of climate change. In fact, using natural gas for plastic perpetuates climate change. Climate & Plastics found that this year, “the production and incineration of plastic will add more than 850 million metric tons of greenhouse gases to the atmosphere—equal to the emissions from 136 one-thousand-megawatt coal power plants.” If plastic production grows as currently predicted, by 2030, emissions could reach 1.34 gigatons per year, or 291 new coal plants.

The rate of plastic production is directly at odds with global carbon emissions targets.

While plastic can be used for lightweight parts of electric vehicles or reusable materials, the plastic being produced by the current build out is primarily polyethylene plastic, most commonly used for packaging and single use products- plastic bags, bottles, jugs, containers, and plastic films and linings; products that countries and cities are phasing out.

3. Encourage plastic alternatives

While renewable energy is becoming increasingly available, so too are plastic alternatives. Across the world, communities are rethinking the products we use everyday. Thanks to historic legislation, zero waste stores,  and towns, and plastic-free bloggers, it’s never been a better time to cut back on plastic – and the FracTracker team is doing our part.

Rebecca, our Administrative and Human Resources Specialist, has cut her plastic use by switching to toothpaste tablets and bars of soap. Karen, our Eastern Program Coordinator, makes her own reusable beeswax food wraps. And Erica Jackson and Isabelle Weber in the Pittsburgh office keep reusable utensils in their backpacks. The whole team is cutting back on single-use plastic products, and are always on the look-out for non oil and gas-based products.

We also realize that with companies like Coca Cola selling 3,000 plastic bottles every second, and Nestlé  producing 1.7 million tons of plastic packaging a year, corporations play a key role in this movement.

Through the Story of Stuff’s #Messageinabottle project and Greenpeace’s #Isthisyours campaign, we’re also encouraging corporations to reimagine how the package and transport products.

Now YOU know, what will you do to help your company, community, or yourself #BreakFreeFromPlastic?

The Falcon Public Monitoring Project

Part of the Falcon Public EIA Project

In March of 2019, two and a half years after Shell Pipeline Co. announced plans for the Falcon Ethane Pipeline System, the imported pipes arrived at the Port of Philadelphia. As tree clearing and construction begins, we share frustration with residents that the project is underway while many of our concerns remain unaddressed.

Between 2010 and 2018, over 280 pipeline incidents were reported in Ohio, West Virginia, and Pennsylvania (the three states the Falcon crosses). Of those incidents, 70 were fires and/or explosions. As regulatory agencies and operators fail to protect the public, communities are taking the reins.

Residents of southwest PA gather along the Falcon route

Environmental organizations are training the public to spot construction violations and appealing inadequate pipeline permits. Impacted residents are running for office, testifying in court, and even spending time in prison to protect their communities.

These grassroots efforts are contributing to a shift in public perception about the safety and need of pipelines. In some cases, including with the Northeast Energy Direct Pipeline and the Constitution Pipeline, organizing efforts are helping stop projects before they begin.

We invite all residents along the Falcon route to get involved in ongoing efforts to monitor construction. Below, you’ll find a guide to reporting violations as well as high-risk areas along the Falcon route that require close monitoring.

Be a citizen watchdog

[av_font_icon icon=’ue80f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

Taking photos of pipeline development and recording your observations is a great way to monitor impacts. One tool to use while monitoring is the FracTracker mobile app (search “FracTracker” in the App Store or Google Play to download for free). The app allows the public to submit geolocated photos and descriptions of development, such as pipelines and wells, and concerns, such as spills and noise pollution. These reports help FracTracker crowdsource data and alert us to concerns that need follow up action. The app also contains a map of wells, pipelines, and compressor stations, including the Falcon pipeline route for reference in the field.

Click on the images below to view app reports of Falcon construction.

Documenting violations

During the construction phase, incidents often occur when companies cause erosion of the ground and release sediment, equipment, or discharge into waterways. Mountain Watershed Association and Clean Air Council have provided the following information on the process of looking for and documenting violations.

Step 1) Document baseline conditions. Documenting the pre-construction status of an area is crucial for understanding how it’s been impacted down the road. Document baseline conditions by taking photos, videos, and notes at different sites, and include the location and date on these materials (the Fractracker app does this for you automatically). Observing sites at different times and in different weather (such as during or after a storm) will give you the best data.

Step 2) Know what to look for. Below are images and descriptions of common construction violations.

Filtration Failure

Drilling fluid spill

For more violations, checkout Pipeline CSI’s list of Top Ten Observable Non-Compliance Issues.

3) File a Report. File an official complaint to your state environmental regulatory agency.

Your concerns can be sent to regulatory agencies using the following contact information:

4) Contact support organizations. There are several organizations ready to take action once violations have been confirmed. For confirmed violations in Beaver County, PA, contact Alex Bomstein, at the Clean Air Council (215-567-4004 x118) and for confirmed violations in Allegheny or Washington Counties, PA, contact Melissa Marshall at the Mountain Watershed Association (724-455-4200 x7#). For violations in Ohio or West Virginia, reach out to FracTracker (412-802-0273).

Reports made on the FracTracker App are shared with any app user and the FracTracker team, who look through the reports and contact users for any required follow up. App reports can also be submitted to regulatory agencies electronically. Simply visit the web version of the app, click on your report, and copy the URL (web address) of your report. Then “paste” it into the body of an email or online complaint form. The receiver will see the exact location, date, and any notes or photos you included in the report.

Where should you be monitoring?

Monitoring efforts must be limited to publicly accessible land. In general, areas that are most at-risk for environmental impact include stream and wetland crossings, steep slopes (particularly those near water crossings), flood-prone zones, and areas where storm water runoff will reach waterways. View a map of the Falcon’s water crossings here, and continue reading for more vulnerable locations to monitor.

The information below identifies high-risk areas along the pipeline route where monitoring efforts are extra necessary due to their impacts on drinking water, wetlands, undermined areas, and vulnerable species.

Drinking Water

[av_font_icon icon=’ue83f’ font=’entypo-fontello’ style=” caption=” link=” linktarget=” size=’40px’ position=’left’ color=”][/av_font_icon]

We found 240 private water wells within 1/4 mile of the Falcon.

While all of these wells should be assessed for their level of risk with pipeline construction, the subset of wells nearest to horizontal directional drilling (HDD) sites deserve particular attention. HDD is a way of constructing a pipeline that doesn’t involve digging a trench. Instead, a directional drilling machine is used to drill horizontally underground and the pipe is pulled through.

While an HDD is designed to avoid surface impacts, if rushed or poorly executed, it can damage surface water, groundwater, and private property. The Mariner East 2 pipeline construction left several families without water after construction crews punctured an aquifer at an HDD site.

Shell’s data highlights 24 wells that are within 1,000 feet of a proposed HDD site.

We’ve isolated the groundwater wells and HDDs in a standalone map for closer inspection below. The 24 most at-risk wells are circled in blue.

View Map Fullscreen | How FracTracker Maps Work

Testing your groundwater quality before construction begins is crucial for determining impacts later on. Two upcoming workshops in Washington County, PA and another in Beaver County, PA will discuss how to protect your water and property.

The Falcon’s HDD locations offer disturbing similarities to what caused the Mariner East pipeline spills. Many of Sunoco’s failures were due to inadequately conducted (or absent) geophysical surveys that failed to identify shallow groundwater tables, which then led to drilling mud entering streams and groundwater.

Figure 1 below shows Greene Township, Beaver County, just south of Hookstown, where the “water table depth” is shown. The groundwater at this HDD site averages 20ft on its western side and only 8ft deep on the eastern side.

Figure 1. Water table depth in Greene Township

Water Reservoirs

The Falcon also crosses the headwaters of two drinking water reservoirs: the Tappan Reservoir in Harrison County, OH (Figure 2) and the Ambridge Reservoir in Beaver County, PA (Figure 3).  The Falcon will also cross the raw water line leading out of the Ambridge Reservoir.

The Ambridge Reservoir supplies water to five townships in Beaver County (Ambridge, Baden, Economy, Harmony, and New Sewickley) and four townships in Allegheny County (Leet, Leetsdale, Bell Acres & Edgeworth). The Tappan Reservoir is the primary drinking water source for residents in Scio.

Figure 2. Tappan Reservoir and the Falcon route in Harrison County, Ohio

Figure 3. Ambridge Reservoir and the Falcon route in Beaver County, Pennsylvania

Wetlands

Wetlands that drain into Raccoon Creek in Beaver County, PA will be particularly vulnerable in 2 locations. The first is in Potter Township, off of Raccoon Creek Rd just south of Frankfort Rd, where the Falcon will run along a wooded ridge populated by half a dozen perennial and intermittent streams that lead directly to a wetland, seen in Figure 4. Complicating erosion control further, Shell’s survey data shows that this ridge is susceptible to landslides. This area is also characterized by the USGS as having a “high hazard” area for soil erosion.

Figure 4. Wetlands and streams in Potter Township, PA

The other wetland area of concern along Raccoon Creek is found in Independence Township at the Beaver County Conservation District (Figure 5). Here, the Falcon will go under the Creek using HDD (highlighted in bright green). Nevertheless, the workspace needed to execute the crossing is within the designated wetland itself. An additional 15 acres of wetland lie only 300ft east of the crossing but are not accounted for in Shell’s data. This unidentified wetland is called Independence Marsh, considered the crown jewel of the Independence Conservancy’s watershed stewardship program.

Figure 5. Wetlands and Raccoon Creek in Independence Township, PA

Subsurface concerns

Shell’s analysis shows that 16.8 miles of the Falcon pipeline travel through land that historically has or currently contains coal mines. Our analysis using the same dataset suggests the figure is closer to 20 miles. Construction through undermined areas poses a risk for ground and surface water contamination and subsidence. 

Of these 20 miles of undermined pipeline, 5.6 miles run through active coal mines and are located in Cadiz Township, OH (Harrison Mining Co. Nelms Mine, seen in Figure 6); Ross Township, OH (Rosebud Mining Co. Deep Mine 10); and in Greene Township, PA (Rosebud Mining Co. Beaver Valley Mine). 

Figure 6. Coal mines and are located in Cadiz Township, OH

For a complete map of mined areas, click here.

More than 25 of the Falcon’s 97 pipeline miles will be laid within karst landscapes, including 9 HDD sites. Karst is characterized by soluble rocks such as limestone prone to sinkholes and underground caves. A cluster of these are located in Allegheny and Washington counties, PA, with extensive historical surface mining operations.

The combination of karst and coal mines along Potato Garden Run, in Figure 7, make this portion of the pipeline route particularly risky. At this HDD site, the Falcon will cross a coal waste site identified in the permits as “Imperial Land Coal Slurry” along with a large wetland.

Figure 7. Coal mines in Imperial, Pennsylvania

Vulnerable species

Southern Redbelly Dace

The Southern Redbelly Dace, a threatened species, is especially vulnerable to physical and chemical (turbidity, temperature) changes to their environment. PA Fish and Boat Commission explicitly notes in their correspondence with Shell that “we are concerned about potential impacts to the fish, eggs and the hatching fry from any in-stream work.” Of note is that these sites of concern are located in designated “High Quality/Cold Water Fishes” streams of the Service Creek watershed (Figure 8). PFBC stated that that no in-stream work in these locations should be done between May 1 and July 31.

Figure 8. “High Quality/Cold Water Fishes” streams identified as habitat for the Southern Redbelly Dace

Northern Harriers & Short-Eared Owls

Portions of the Falcon’s workspace are located near 6 areas with known occurrences of Short-eared Owls (PA endangered species) and Northern Harriers (PA threatened species). Pennsylvania Game Commission requested a study of these areas to identify breeding and nesting locations, which were executed from April-July 2016 within a 1,000-foot buffer of the pipeline’s workspace (limited to land cover areas consisting of meadows and pasture). One Short-eared Owl observation and 67 Northern Harrier observations were recorded during the study. PGC’s determined that, “based on the unusually high number of observations at these locations” work should not be done in these areas during harrier breeding season, April 15 through August 31.

Figure 9. Surveyed areas for Short-eared Owls (PA endangered species) and Northern Harriers (PA threatened species)

Bald Eagles

A known Bald Eagle nest is located in Beaver County. Two potential “alternate nests” are located where the Falcon crosses the Ohio River. National Bald Eagle Management Guidelines bar habitat disturbances that may interfere with the ability of eagles to breed, nest, roost, and forage. The 1 active nest in close proximity to the Falcon, called the Montgomery Dam Nest, is located just west of the pipeline’s terminus at Shell’s ethane cracker facility.

U.S. Fish and Wildlife Service requested that Shell only implement setback buffers for the one active nest at Montgomery Dam (Figure 10). These include no tree clearing within 330 feet, no visible disturbances with 660 feet, and no excessive noise with 1,000 feet of an active nest. Furthermore, Shell must avoid all activities within 660ft of the nest from January 1st to July 31st that may disturb the eagles, including but not limited to “construction, excavation, use of heavy equipment, use of loud equipment or machinery, vegetation clearing, earth disturbance, planting, and landscaping.

Figure 10. Bald Eagle nest in Potter Township, Pennsylvania

Bats

The Falcon is located within the range of federally protected Indiana Bats and Northern Long-eared Bats in Pennsylvania and West Virginia. In pre-construction surveys, 17 Northern Long-eared Bats were found at 13 of the survey sites, but no Indiana Bats were captured.

A total of 9 Northern Long-eared Bat roost trees were located, with the nearest roost tree located 318 feet from the pipeline’s workspace. Figure 11 below shows a cluster of roost trees in Raccoon Township, PA. For a map of all the roost trees, click here. The U.S. Fish and Wildlife Service stated that “Due to the presence of several Northern Long-eared Bat roost trees within the vicinity of the project footprint (although outside of the 150-foot buffer), we recommend the following voluntary conservation measure: No tree removal between June 1 and July 31.”

The Pennsylvania Game Commission noted in early correspondences that Silver-haired Bats may be in the region (a PA species of special concern). PGC did not require a further study for the species, but did request a more restrictive conservation of no tree clearing between April 1 and October 31.

Figure 11. Northern long-eared bat roost trees in Raccoon Township, Pennsylvania

For more information on the wildlife impacts of the Falcon Pipeline, click here.

***

To continue reading about this pipeline, visit the Falcon Public EIA Project. 

By documenting the impacts of the Falcon Pipeline, you’re contributing to a growing body of work that shows the risks of fossil fuel pipelines. Not only does this evidence protect drinking water and vulnerable species, it serves as evidence against an inherently dangerous project that will contribute to climate change and the global plastics crisis.

We hope you’re inspired to take action and add your voice to a growing team in the region committed to safer and healthier environments. Thank YOU for your dedication to the cause!

By Erica Jackson, Community Outreach and Communications Specialist, FracTracker Alliance.

Portions of this article were adapted from previous posts in the Falcon Public EIA Project, written by Kirk Jalbert.

Staff Spotlight: Shannon Smith

As part of FracTracker’s staff spotlight series, learn more about Shannon and her passion for environmental justice and public health that led her to FracTracker

Staff Spotlight: Shannon Smith

Time with FracTracker: I just started in May 2019!

Education: BA in Cultural Anthropology from Reed College in Portland, OR

Office Location: Pittsburgh, PA

Title: Manager of Communications and Development

What will you actually do in that role?

FracTracker’s mission is to “study, map, and communicate the risks of oil and gas development to protect our planet and support the renewable energy transformation.” I’ll be focusing on the “communicate” part of our mission!

This is my very first post for FracTracker, but I will be writing many more in this role. I’ll also be maintaining the website, acting as a media liaison, managing the internship program, and supporting the Executive Director with fundraising efforts.

Essentially I will be learning as much as I can about ongoing issues around fracking, regional oil and natural gas projects, and FracTracker research, and then sharing what I find in educational, useful, and compelling ways. I’m very excited to get started!

Previous Position and Organization

During the past five years, I worked with several environmental public health nonprofits in Cap-Haitien, Haiti. I primarily worked as the Marketing Adviser for SOIL, an R&D organization that operates fecal waste management services and is globally recognized for their work in urban ecological sanitation. More recently, I was working as a Communications and Development Consultant for Second Mile Haiti, an organization that collaborates with Haitian public health institutions and provides research-based holistic medical services for families who face severe food insecurity and malnutrition in rural Northern Haiti.

How did you first get involved working on oil and gas issues / fracking?

It’s part of my personality to be concerned with justice —  even in elementary school, I was writing letters to my school principal concerning issues that I found to be unfair to the student body. And I grew up spending a lot of time outside in a rural area in Northwestern Pennsylvania. So I think my passion for environmental justice came together naturally at a relatively young age.

Before my time in Haiti, I was a environmental justice activist in the Pacific Northwest. The group I worked with was largely focused on preventing companies from obtaining permits to turn the beautiful bioregion into a fossil fuel corridor that would lead to a series of coal export terminals. The movement against these coal export terminals was quite successful, which inspired me and opened my eyes to a world of possibilities for futures that are more firmly grounded in ecological sustainability and social justice.

I’m so grateful that I had the opportunity to learn from community organizers and activists in the Pacific Northwest who come from a long lineage of inspirational environmental and social movements. I’m also thankful for my peers who helped me to connect the dots between structural racism, settler-colonialism, employment and housing issues, public health, and climate change.

Fracking is an issue that can be found in these intersections, so when moving back to my home state of Pennsylvania after over ten years of study and work, it was on the forefront of my mind. Climate change and our relationship to fossil fuels are fundamental issues that define this period of time on Earth, and I want to be part of the solution.

What is one of the most impactful projects you are excited to be involved in with FracTracker?

Together, the FracTracker team has an astonishing level of expertise around fracking. I’m excited to learn from my fellow staff members and to make all of that knowledge accessible to others who want to take action in their own communities.

Fracking is dangerously under-regulated and therefore unaccountable. FracTracker is creating tools, maps, and knowledge to equip individuals, local organizations, and communities with more power to hold industry accountable. I am excited to network with people who find FracTracker’s work useful and see how we can create powerful synergies and alternative futures.

By Shannon Smith, FracTracker’s Manager of Communications and Development

One in a Million

Help Us Celebrate Our Visitation Milestone with a Gift Today

FracTracker was launched in June of 2010 as a website managed by the Center for Healthy Environments and Communities at the University of Pittsburgh. As we approach our ninth birthday, we are pleased to announce quite a milestone: FracTracker.org has reached over one million users! As of April, 2019, the website has experienced over 1,375,041  visits with more than 1,055,171 users.

That’s a lot of people learning about the detrimental effects of extraction – advocates, researchers, community leaders, politicians, journalists, concerned residents. Many are inspired to take action, utilizing our maps, data, and images for positive change.

The FracTracker team is tireless in their efforts to illuminate issues and aid communities with data-driven resources. Sustaining and coordinating the work can be tiring and financially draining. GIS costs, investments in personnel, improvements in our technology, strategic planning, continuing education…the list goes on but so do our services, day after day.

In honor of our ‘one million’ milestone, please consider a donation to FracTracker Alliance. We’d be ecstatic with a $1 million contribution (I might pass out from sheer joy) but we’ll be thrilled by whatever support you can offer – whether it’s $100, $10, or $1.

We don’t ask incessantly, but occasionally we must and this seems like a proper occasion. Help us celebrate our expanding reach with a donation today. We lament the necessity, but know that someday our work, and the collective activities of individuals and organizations around the globe, will yield the ultimate payoff: a healthier energy future for all. Thank you for caring!